AD-4208 167

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

a c1 ECTE
MAY 3 0 1989

THESIS

SOFTWARE ENGINEERING WITH DATABASE
MANAGEMENT SYSTEMS
by
Labros G. Karatasios
March 1989
Thesis Advisor: S. H. Parry

Approved for public release, distribution unlimited

SECURITY C_ASS = CATION OF "= ¢ 2AC

m

REPORT DOCUMENTATION PAGE

la REPORT SECURTY CLASSIF.CATION b RESTR.CTIVE MARKINGS
UNCLASSIFIED
2a SECURITY CLASSIFCATION AUTHORITY 3 DISTRIBUTION . AVAILABILITY OF REPORT Approved for
public release, distribution unlimited
20 DECLASSIFICATION - DOWNGRADING SChEDULE
s [2 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
3 GR NAMi Oi’ psa;oamwg ORGANIZATION 6o OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
vava ostgraduate (If applicable) N
aval Postgraduate School
School 37 g
6c. ADDRESS (Crty, State, and ZIP Coge) 7b. ADDRESS (Crty, State, and ZIP Code)
Monterey, CA 93843-5000 Monterey, CA 93943-5000
-
8a. NAME OF FUNDING . SPONSORING 8b OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO NO ACCESSION NO.

11 TITLE (include Secunity Ciassification) SOFTWARE ENGINEERING WITH DATABASE MANAGEMENT SYSTEMS

12. PERSONAL AUTHOR(S)
Kargtasios, Labros C,

13a. TYPE OF REPORT 13 TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 1S PAGE COUNT

Master's Thesis FROM 10 1989 March 189

16. SUPPLEMENTARY NOTATION 1 e Vv1iews expressed 1n thils thesls are those o the author
*| and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

17 COSAT: CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP suB-GROUP? —| Database Design; Personnel Systems; Greek Navy
"} Personnel Database — .. . o
B P ; Y

9. ABLTRACT (Continue on reverse if necessary and dentify by block number) .

>The purpose of this thesis is to communicate a general knowledge of
software engineering principles that can be applied to the development of
a software system. Fundamental Software Engineering concepts are first
discussed and then applied to a personnel database management system which
is featured throughout the thesis. The individual tools and techniques .
that are used in each phase of the system development are widely known in
the computer science community and each has been employed successfully

in certain situations. , - o

et -

20_DISTRIBUTION - AVAILABLITY OF ABSTRACT 21 ABSTRACT SECURITY. CLASSIFICATION
B3 unclassiicorunamviten [same AS RPT (] DTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIE-E NDIVIDUA. 27n TEEDWONE [liclude Area Cooe, | —ov Oiror SYMBOL
Prnf{ S. H, Duarry (408)646-2779 55Py
DD FORM 1473, aavas 83 AP ec 10N may De use0 ynti exhausted SECURITY CLASSIFICATION OF THIS PAGE

AI} - » .o B -
otnher ec e are obsolets © U.S Government Brinuing Office 1986—606-24.

1

Approved for public release, distribution unlimited

Software Engineering with Database Management Systems
by
Labros G. Karatasios

Major, Hellenic Army
B.A., Hellenic Army Academy, 1874

-

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL PQSTGRADUATE SCHOOL
March 1989

Lo —

Author:
Labros G. Karatasios

Lpproved by:
Samuel H. Parry;/aﬁesis Advisor

e

Thomas Wa, Second Reader

W2 Q9.

Robert B. McGhee
Chairman, Department of Computer Science

' \‘rt M&N
Kneale T. LATSRalN

Dean of Informaticn and Policy Sciences

11

ABSTRACT

The purpose of this thesis 1 to communicate a general
knowledge of software engineering principles that can be
applied to the development of a software system. Fundamental
Software Engineering concepts are first discussed and then
applied to a personnel database management system which is
featured throughout the thesis. The individual tools and
techniques that are used in each phase of the system develop-
ment are widely known 1in the computer science community and

each has been employed succesasfully in certain situations.

Accesion For

/

NTIS CRA& i

DTIC TAB 0
a

Urannouced
Justification

Qistribution]

Avatlability Coces

b———— e PR—
v | Avan andfor

Dist Special

|

A1 |

i1i

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTION e e e e e e e
THE SOFTWARE DEVELOPMENT PROCESS
PROBLEM DEFINITION,
A. THEORY e
B. IMPLEMENTATION
1. The Greek Army0 ..
2. The problem environment
3. The Problem Definition
FEASIBILITY STODY,
A. THEORY i i e e e
1. Why a Feasibility Study?,
2. Confirm the problem definition
3. Study the existing system
4. Develop a high-level model
5. Confirm the logical model
6. Develop and evaluate alternative solutions
7. Select one alternative
8. Initiate a development plan
9. Document and present the feasibility study
B. IMPLEMENTATIONttt
1. Confirm the problem definition
2. Study the existing system
3. Develop a high-level model
4. Confirm the logical model
5. Develop and evaluate alternative solutions

iv

Page

11

13
13
13

14
14
15
15

15
16

17
17
17

17
18
21

23
24

Page

6. Select one alternative 26
7. Initiate a development plan 26
. 8. Document and present the feasibility study 27
. V. ANALY SIS e e e 28
A. THEORY .ttt ittt et ee e, 28
1. The purpose of the Analysis phase 28
2. Techniques of use during Analysis 30
3. A brief description of Structured Analysis 31
B. THE IMPLEMENTATION OF STRUCTURED ANALYSIS 33
1. Explode the Data Flow Diagram 33
2. Define the data elements 38
3. Construct the data dictionary 41
4. Write process descriptions 41
5. Review the functional requirements 42
6. Pregent the functional requirements
to the management0ty 43
. VI. SYSTEM DESIGNc.covviiiieinnnnnnaanannnn.. 44
A. THEORY e et 44
1. The purpose of System Design 44
2. Identify alternative solutions 44
a. Data alternatives 45
b. Software e 45
c. Hardwaret i 46
d. People i e e s e e 46
3. Select one alternative 47
B. THE IMPLEMENTATION OF SYSTEM DESIGN 48
. 1. Identify alternative solutione 48

2. pelect one alternative 50

VII.

VIII.

IX.

! Page

DETAILED DESIGN i, 53

A. THEORY ...ttt ittt 53

1. Purposge of the Detailed Design 5%

2. Databage design ittt 53

a. Logical Database Design 573

b. Physical Database Design 55

3. Design of the application programs 55

B. IMPLEMENTATION OF THE DETAILED DESIGN 60

1. Database design it i 60

a. Logical database desgign 60

b. Physical database desgign 66

2. Design of application programs 69
IMPLEMENTATION i i 73

A. THEORY i it it e i i i 73

1. The purpose of the Implementation phase 73

2. The steps of Implementation PP 73

B. IMPLEMENTATION it 76

1. Constructing a test data base 76

2. Translating the design into dBASE III Plus code 77

3. Testing, debugging and documenting the system 77
CONCLUSION ittt ittt et i e 79
Appendix A: The system Data Flow Diagrams 80
Appendix B: The Data Dictionary, 84
Appendix C: Process Descriptions 96
Appendix D: Application programs design 107
Appendix E: Program listinge i, 168
LIST OF REFERENCESt 179
INITIAL DISTRIBUTION LIST00 i 182

vi

I. INTRODUCTION

During the past thirty years the advances in computer
hardware have been so phenomenal that even the pioneers in the
computing industry are amazed at how much progress has been
made. Progress in computer hardware with respect to cost,
speed of computations and decrease 1in size 1is measured by
several orders of magnitude and the most amazing is the forty
percent compound annual rate of reduction in the unit cost of
memory and storage.

Unfortunately, our ability to build software, which is
necessary to interface with the computer hardware, has not
progressed as rapidly. As the range of computer applications
has grown and the complexity of tasks computers can handle has
increased, the cost of developing software for a computer
system has increased so much that it has become by far the
most costly component in the system. The main cause of the
increase in the cost of software was that the existing metho-
dologies for software development were inadequate. As a result,
many software systems failed, and many others were late,
unreliable, difficult to maintain, their performance was poor
and they cost much more than originally predicted.

Much research has been conducted during the last twenty
years on software development techniques and methodologies
that would end the “software crisis”. A new technological
discipline, Software Engineering, haes been developed to
improve the gquality of software products and to increase the
productivity of software engineers.

The term "Software Engineering” was chosen as the title of

a NATO conference in 1968 in order to express "the need for

software manufacture to be based on the types of theoreticai
foundaticona and practical disciplines that are traditional in
the established branches of engineering”. [Ref. 1: p. 13]
Since then a lot of activity has Dbeen focused on software
engineering. The Institute of Electrical and Electronics Engi-
neers (IEEE) has been publishing the "Transactions on Software
Engineering" since 1875. The Association for Computing
Machinery (ACM) has founded a Special Interest Group on Soft-
ware Engineering (SIGSOFT). ©Several conferences and symposia
on this new discipline have been sponsored by many organizati-
ons. The chairman of the IEEE Richard Fairley stated in 1978
that "Software engineering has evolved into a major subdisci-
pline of computer science and engineering. Although much
remains to be done, a body of knowledge and a set of guide-
lines have emerged which incorporate traditional engineering
values 1into the production and maintainance of software
systems”. [Ref. 2]} During recent years a great number of
well known and unknown computer scientists and theorists have
defined numerous techniques and methodologies on the develop-
ment of software products. Much discussion and controversy
follow the announcement of every new method or technique. Some
of these techniques are more controversial than others. Some
of them do not work at all in certain situations while they
are very effective in others. Some techniques are very promis-
sing; Ed Yourdon, in one of his many books on the structured
techniques, trying to convince the reader how good these tech-
niques are, he writes: “... what the techniques c¢an do is
impressive. Chances are that if you use the techniques, you'll
be sipping your mint julep in your Mediterranean villa before
long. If vyou don"t use the techniques, well, chances are

you'll be replaced by someone who does.” [Ref. 3:p. 3]

After so many years of analyzing and studying the mecha-
nisms of software development, software engineering has not
yet heean able to develop a universally accepted methodology
for building software, and software development is still con-
sidered an art by most people. The truth is that many of the
developed techniques really work. Studies conducted by large
software organizations have proven that the programmer produ-
ctivity and the software quality has improved significantly
with the use of certain techniques. For example, IBM studies
report an average of forty percent productivity savings 1in
real-time, business and systems software projects utilizing
structured programming. [Ref. 41 In other projects, however,
it has been found that the principles of software engineering
do not always guarantee success.

Although a definite trend exists 1in academic computer
science circles toward the recognition of software development
as an engineering discipline, such recognition is much less
pronounced among software houses and other software producers.
One of the reasons is that the established software enginee-
ring principles and techniques are very often too technical
and require a higher~level of knowledge in Computer Science to
understand them. Unfortunately, the main body of programmers
consists of people with litle or no higher education back-
ground. In fact only a very small fraction of the people who
are programming computers have ever studied computer science
in any depth. In the U.S5.A., some 29,600 bachelor’ s degrees
were awarded in computer and information sciences in the six-
year period 1972-1977. (Ref. 5: Pg. 16%9] These courses of
study were first offered in the 1960's and are still growing;
therefore it can be assumed that a comparable number of degrees

were awarded in the years before 1972. Although we do not have

the statistics for the years after 1979 it is estimated tha*
the total number does not exceed one hundred thousand. This
number is quite small in comparison with the 300,000 program-
mers working full time and another 300,000 who work part time.
{[Ref. 6: Pg. 6] On the other hand, the existing literature on
software engineering is anything but reliable. The books one
can find on software development +tools and techniques are
usually very abstract and difficult to read. The majority of
such books concentrate on only one phase in the software life-
cvcle and provide no interface with the rest of the phases.
Most of them do not provide a case study to illustrate the
thecoretical part and those who do, usually give very simpli-
fied examples that have nothing to do with the complexity of
the real world and they alsoc shift to a different case study
as they g¢ from one phase to another. As a result of the above
cituation the books on software engineering concepts have a
vervy small number of readers. limited tc academians and compu-
ter science students in the universities. On the other hand.
books of the type “"How to become a programmer in ten easy
steps’ or books with applications software that can be extended
or modified to fit someone s needs are becoming best sellers.
The purpoce of this thesis 1s to communica*e a general
knowledge of esoftware engineering principles that can be
applied to the development of a software system. A personnel
database management system was chosen to serve as an example
throughout the thesis. The individual tools and techniques
that are used 1in each phase of the system development are
widely known in the computer science community and each has
been employed successfully in certain situations. This does
not mean that the presented techniques are the only techniques

a software engine<r can use. (n the contrary there are as good

or even better techniques 1in certain cases. What the reader
must understand is two things:

a. The development of any software system must follow
certain steps. Different people have given different names to
these steps and others have combined or analyzed them. Whether
the six—-step decomposition of a system's life-cycle fallowed
in this thesis is better than others is not a key issue. What
is important 1s to recognize that phases exist and organize
the approach to account for them.

b. The development of software systems can be fascilitated
by software engineering tools and techniques that allow the
developer to continuously assess the extend of his progress
and the wvalidity of his decisions. The tools and technigues
used in the develapment of the example software system are not
to be considered as the most recommended ones or as suitable
for all cases. Each software engineer may choose the set of
tools and techniques that he thinks is most appropriate for
the system he is developing. The idea is that such sets do
exist and the thesis provides such an example.

The reason why a database management system (DBMS) was
selected to serve as a case study in the thesis Is that a DBMS
is like any other software system, only 1t is sorewhat more
complicated because it involves the design of a database. An
additional reason is that DBMS's are very popular today and it
is likely that most software engineers will face the problem

of developing such a software system.

II. THE SOFTWARE DEVELOPMENT PROCESS

To better control the development of a software system,
software engineering bhas identified a sequence of stages
through which the system passes; these stages are collectively
called the software development life-cycle. The stages of the
software life-cycle followed 1in this thesis are described

below.

A. PROBLEM DEFINITION
This first stage helps the software engineer understand
the problem and define the objectives and the scope of the

system he will develap.

B. FEASIBILITY STUDY

During this stage it is determined 1f the problem can be
solved and a number of soluctions that might satisfy the user’'s
needs within the defined scope are identified. At the end of
this stage the saoftware engineer obtains a decision from the
user or management whether to proceed with the development of

the system.

C. ANALYSIS

This is the most important stage in the system life-cycle.
The software requirements (i.e., the system’'s functions and
operational constraints) are specified and documented during

analysis.

D. SYSTEM DeSIGN
The software engineer determines how in general the system

will be 1implemented by identifying different alternative

strategies and selecting the one that best satisfies the

system’'s needs.

E. DETAILED DESIGN

The designer takes the software requirements prepared
during analysis and based on the decision made during system
design, organizes them in a way.suitable for computer execu-

tion.

F. IMPLEMENTATION

In this stage results produced during the detailed design
are implemented in source code. It is also the purpose of this
stage to verify that this source code implements correctly the

design specifications.

There is no single decomposition of the software develop-
ment process. The one presented here works 1in practice but
modifications may be required for other applications. The
important thing is that all the different decompositions of
the system life-cycle that exist require all of the above
functions to be performed, no matter what name they assign to
each stage, whether they combine two or more stages in one, or
further decompose one stage.

The following six chapters of the thesis develop each
stage of the software development process. Each chapter 1is
divided 1into two parts. In the first part the theory of the
particular stage is given and in the second part this theory
is applied to a real database management system for implemen-

tation in the Greek Army.

ITI. PROBLEM DEFINITION

The first step 1in the system 1life-cycle 1is the Problem
Definition during which the analyst understands the problem
and defines the objectives and the scope of a system that

solves 1it.

A. THEORY

It is very unlikely that an analyst would be asked to de-
sign a system that has no precedent. Most of the time a system
that works already exists but which may have some probiems in
its performance. These problems may be recognized by the user
himself oar by the management. I1f the problem is serious and
its solution is considered imperative, then an analyst will be
asked to offer his services.

The first thing the analyst must do, in any case, 1s to
understand the existing problem and prepare a written state-
ment of his understanding. Many analysts consider this step
as needless, but it has been proven that in a number of cases
the delivered system solved a different problem from the one
the user had in mind, just because the analyst ignored this

step.

B. IMPLEMENTATION

1. The Greek Army

Before introducing the problem that we as analysts
will be asked to analyze and try to solve, a very brief over-
view of the Greek Army structure and the soldier life-cycle
will be presented.

The Greek Army consists of the Operational Arms

(Infantry, Artillery, Armor, Corps of Engineers and Signal

Corps) and the Support Services, The Arms and Services are
manned by officers, non-commissioned aofficers and soldiers.
The officers and NCOs are for the most part professional
career personnel who graduate from the Military Academy and
the NCO School. The soldiers are citizens who have been con-
scripted to serve in the Army faor a period of 22 months.
Every two months a new group of soldiers 1is conscripted.
Every Greek citizen has to join the Army, usually at the age
of 21, unless he has been medically proven to be physically or
mentally incapable.
Every soldier passes through the following stages

during his time in the military:

- Enlistment

- Basic Training, lasting two months

- Specialty Training, the duration aof which varies

depending on the specialty the soldier has been assigned.
- Service 1in one or more of the units of the Arm or Service
to which the soldier belongs.
- Separation from military service.
Each Arms or Service Directorate has its own Personnel

Office, located in the General Staff, which manages its per-
sonnel and is responsible for the smooth transition of its
soldiers from one stage to the next.

2. The Problem Environment

The Personnel Office of the Signal Corps Directorate,
among its other responsibilities, performs the following fun-
ctions related to the management of its soldiers:

- Maintains updated files of the soldiers in the
Signal Corps.

— Maintains updated files of the Signal Corps Units.

- Estimates the number of soldiers that must be trained in
each specialty.

— Performs the assignments of the soldiers that are necessa-
ry to fill the vacancies created by the retirement or
transfer of other soldiers.

The personnel responsible for carrying out the above
procedures consists of one captain, 2 sergeants and 3 soldiers
acting under the supervision of a colonel who is the director
of the Personnel Office. The director, after almost 2 years of
supervising the Perscnnel Office, has come to the conclusion
that there are problems in its performance.

One of the problems is that too often the personnel
office is not able to prepare the list of the soldiers’' trans-
fers and assignments on time. This is due to the great volume
of transactions involved and frequently because of the untime-
ly arrival of the required information from other subordinate
units. At other times, errors have been discaovered in some of
the lists and reports generated by the Personnel Office.
Flnally, the most important problem is that during the schedu-
ling of the soldiers’ assignments, the office personnel evalu-
ate the needs of the military units, but are rarely able to
evaluate the soldiers needs as well.

The Colonel reported his observations to the Signal
Corps Director and suggested that the personnel system should
be studied to find the means to eliminate the problems. He
also suggested that simply to increase the personnel in his
office should not be considered as a solution, since this
would only create more problems in other areas.

The Signal Corps Director understood the importance
of the reported problems and asked the Studies Directorate to

assign a8 systems analyst to investigate a possible solution.

3. The Progblem Definition

First the analyst must understand the problem. Next he
must define the objectives of a new system that would solve
the problem. He must also estimate an approximate cost of the
new system. He finally prepares a written statement of the
scope and objectives.

Usually the most difficult part in this procedure 1is
to estimate the cost of the new system. At such an early stage
we do not usually expect someone to define accurately the cost
of a system, but to set an upper limit. How can such a limit
be estimated? The operating cost of the existing system must
be considered first. The system is manual, therefore its main
cost is the wages of the employees. This cost is calculated to
be approximately $50,000 annually. One of the constraints for
the new system was that it should not increase the personnel.
This means that the new system may be less expensive than the
old one because it may require fewer people. Of course there
is no way that the system could operate without any peaople at
all, but the analyst feels that it could use two fewer people
than the old one, i.e., a sergeant and a soldier could be
transferred to another office resulting in annual savings of
about $10,000. Therefore with a new system that costs $20,000
we could have a return on investement in abaut two years. This
sounds like a reasanable upper limit. In a few cases of coaurse
the management might agree for political reasons to spend even
more on a8 new system than it was spending on the ald one. Our
case belongs to this category. The new system will satisfy the
soldiers needs for transfers and this will have a positive
effect on the soldiers’ morale. We cannot evaluate morale 1in
terms of money. For the sake of generality the systems scope

will be defined at $20,000.

11

Next the analyst prepares a written statement of the
scope and objectives which summarizes his understanding of the

problem (see Fig. 3.1).

STATEMENT OF SCOPE _AND OBJECTIVES
DATE : 29 January 1987

THE PROJECT : PERSONNEL MANAGEMENT
PROJECT OBJECTIVES : To investigate the potential for a
new system to perform the functions of SCD/
Personnel Office/Soldier Section. This sys-
tem compared to the existing one should be:
. More accurate
More timely
. Less error prone
Will consider not only the military units
needs but the soldiers needs as well.
KEY SELECTION CRITERIA : The number of employees must not
increase.
PROJECT SCOPE : The preliminary cost estimate of the sys-
tem is $20,000 with a precision of 30%
FEASIBILITY STUDY : In order to investigate the potenti-
al for this project more fully, a fea-
sibility study lasting approximately
2 weeks 1s recommended. The cost of
this study will not exceed %1,000 and

is included in the project scope.

Fig. 3.1. The Statement of Scope and Objectives.

IV. FEASIBILITY STUDY

A. THEORY
1. Why a Feasibility Study?

The 1initial phase of the Specification Stage ended
with the preparation of a written statement of the system’'s
scope and objectives. What must be the next step?

Many analysts tend to become attached to the first
possible solution they think of and start proceeding in this
direction. This is a very bad habit that quite often leads to
catastrophic results. If during the process this solution is
found to be infeasible then a large amount of time and effort
has been wasted. Even worse is the case when the analyst does
not want to accept that he failed and tries to integrate the
system, changing part or all of its functions, so that they
fit into the one designed. As a result of the above tendancy,
many systems have been delivered with excessive delays, over
budget and often without solving the problem. In order to
avoid these undesirable effects, a feasibility study must
always follow the problem definition.

The primary objectives of a feasibility study are to
determine if the problem can be solved and to recommend a solu-
tion strategy. There is no standard farmat for a feasibility
study. Many people have described a number of ways on how to
conduct such a study. The reader can find some of them in
(Ref. 73], [Ref. B], [Ref. 9] and [Ref. 10]. There are many
differences in the methods and steps they follow and even in
the contents of the study. The method described in [Ref. 10] is
one of the most complete and easiest to follow and therefore

will be used as a reference point for the feasibility study.

13 .

The main steps of a feasibility study are:
- Confirm the problem definition.
~ Study the existing system.
— Develop a high-level logical maodel.
— Confirm the logical model.
- Develop and evaluate alternative solutions.
— Select one alternative. 4
- Prepare a development plan.
— Write and present the feasibility study.
A brief discussion on each of these steps follows.

2. Confirm the problem definition

It is very probable that the analyst’'s understanding
of the problem as described in the problem definition 1is not
quite accurate. For this reason the analyst must contact the
user and the management and confirm that what he has in mind
is exactly what they want.

3. Study the existing system

A new system almost always replaces an existing one.
We usually want the new system to perform basically the same
functions as the old system but in a faster, more reliable,
cheaper or generally more enhanced way. Sometimes 1t is
desirable that the new system includes a few new functions
that the old system did not perform or to eliminate some
functions that are no longer needed. In any case most of the
functions 1in both systems overlap. Therefore, the study and
documentation of the existing system can provide information
that will be very useful in the following steps. It is not
always easy to understand an existing system. During this step
of the feasibility study the analyst must identify and inter-
view key people in the existing system and collect documents,

distribution lists, or reports produced by the system. It is

14 -

usually easier to study an automated system than a manual one
because the documentation is better organized. Sometimes it is
helpful to summarize the gained knowledge 1in a systems flow-
chart. In any case the analyst must keep in mind that he is
not asked to document the existing system in detail, but only

to understand 1it.

4, Develop a high level madel

The next step 1is to develop a logical model that
stresses the functions that must be performed by the new
system without considering the specific physical way these
functions are implemented in the existing system. In other
words this model will represent the existing system as 1t
ought to be rather than as it actually is.

One of the techniques that is often wused to develop
a high-level 1logical model of a system 1s the Data Flow
Diagram (DFD).

S. Confirm the logical model

In some cases the new and the old systems are perfor-

ming exactly the same functions. In most cases however, the
new system includes some additional functions. The analyst,
working with the user, reviews the logical model developed in

the previous step and adds new features to the model or eli-
minates some features. The final product will be a logical
model of the system that the user had in mind when he asked
for an analyst.

6. Develop and Evaluate Alternative Solutions

With the agreed 1logical model of the system in mind
the analyst will develop a variety of possible solutions to
the problem. There are a number of different techniques that
can help the analyst to generate these high-level solutions.

It is beyond the scope of this thesis to describe each of

these techniques. A simple and effective method is described
below.

First, the analyst generates a set of alternatives
without zonsidering any restrictions or constraints. At this
point he may think of any system that could possibly solve
the problem: a manual system, a fully automated system, a
batch system on a mainframe, an interactive system on a main-
frame or on a microcomputer, a DBMS or any possible combina-
tion of such systems. .

Next, the analyst sould consider the technical feasi-
bility for each of these alternatives. For example 1f one
possible solution 1is to create a data-base system on a micro-
computer using a DBMS packaqge that needs more memory space
than is available on the micro, then this system must be dis~
carded.

The remaining possible solutions are examined for eco-
nomical feasibility. In other words the alternatives that can
not be accomplished within the specified scope are ignored

Finally, political feasibility i1s considered. If, for
example, one solution is to replace or reduce the number of
personnel working in a department - especially in a goverment
organization - this may present a serious political problem in
the organization and it is very prabable that the management
would not accept this as a solution.

7. Select one alternative

Based on the se* of alternatives that have passed the
above feasibility tests, the analyst should select the alter-
native that he believes 1is the best. Keep in mind that the
management wusually bases its decision on the cost savings or

the positive return on investment relative to the existing

16

system. Therefore a cost / benefit analysis should accompany
the recommendation for an alternative.

8. Initiate a development plan

Assuming that management accepts the alternative
recommended by the analyst, they need tao know how lang it
will take to do the Jjob, how many people from the organiza-
tion may be involved and what is the approximate cost of
each step in the process. The analyst must provide this infor-
mation in the form of an initial implementation plan of the
proposed solution.

Q. Document and Present the Feasibility Study

The analyst collects and compiles the results of his
feasibility study and prepares a written report. There 1is no
standard format for the feasibility study report. The analyst
will]l decide which is the best way to document his work during
this study. However, for the reader who feels he needs a
guideline, Figure C.3 1in [Ref, 10] provides an outline of a

typical feasibility study.

B. IMPLEMENTATION

1. Confirm the Problem Definition

The problem definition statement prepared during the
first step of the specification stage included an understand-
ing of the system objectives and scope. But 1s this exactly
what the director of the SCD had in mind when he asked for
a new system? The first task is to confirm that the problem
definition is correct.

The problem is with the performance of the Soldiers
Section of the Personnel Office in the SCD which is headed
by a colonel. He is the one who suggested that a better

personnel management system is needed. The analyst visits

17

him and asks 1f he agrees with his view of the problem. He
confirms that the objectives are <clearly stated, but he
thinks that the scope 1s too costly. The SCD is not willing
to allocate more than $15,000 for this project. Therefore
the scope of the system 1s changed to accomodate a cost of
$15,000. Now both the scope and objectives have been con-
firmed.

2. Study the existing system

The main purpose of this step is to understand thre
existing system. If it is known what the existing system
does, then 1t is easier to find one or more ways to design
a new system that eliminates the problems.

The sources of information that will help in the
understanding of the existing system are two: people who work
in the system and daocuments (reports, forms etc) used or
produced by the svstem. During the interview the Colonel in-
dicated that the best source of information is his assistant.
The interview with this officer led the analyst to interviews
with some other key people inside and outside the SCD and
finally he came up with the following description of the
system:

New soldiers enter the Signal Corps every two months.
On the first day of each odd month a new group of draftees
reports to the Enlistment Center (EC) where they are examined
for physical and mental ability. The EC then prepares a list
with the names and other information of the soldiers who were
Jjudged acceptable and sends one copy to the Basic Training
Center (BTC) and one to the SCD.

Those draftees found capable of becoming soldiers are
sent to the BTC where they receive training for two months in

the basic subjects that every soldier must know. The average

18

number of soldiers tnat enter the Signal Corps every two
months is about 1,000.

The SCD matches the number of new socldiers with the
general needs for specialized personnel and calculates the
number of soldiers that must be trained 1in each of the 15
different specialties. O0One list with these numbers 1is sent
to the BTC which, after interviews with the soldiers, decides
in which specialty each soldier will be trained.

The BTC prepares a list with the names of the soldiers
and the specialty selected for each one and sends one copy to
the SCD for information and one copy to the Special Training
Center (STC) to assist in scheduling the training of the new
incoming saldiers.

After the end of their basic trainig the soldiers are
sent to the STC where they will receive training in the speci-
alty they were assigned. The duration of this training is
one, two, or three months, depending on the specialty. One
week before the end of the training of each specialty the
STC sends a report to the SCD with the names of the trained
soldiers.

The SCD, based on this report and the personnel needs
of the Signal Corps units, selects the wunits to which the
newly trained soldiers will be assigned and sends a copy of
the assignments list to the STC and the interested units. This
procedure takes place during the first five days of each
month.

Each wunit of the Signal Carps submits two reports
to the SCD at the end of each month. The first includes the
names of the soldiers who retired or were separated from act-
ive duty during the month and the second includes the changes

(if any) in the status of the soldiers 1in the unit. The SCD

19

uses these reports to update the soldiers’ individual files
and the units’ files.

The above description, although very general, is suf-
ficient for wunderstanding the current system. Of course
during the study of the system notes have been taken on many
details that will help later to design the new system. For
example, copies of the various lists, reports or forms that
are produced or used by the system were requested.

The main observations about the existing system are
described below.

(1) The basic functions that the Soldiers Section in the
Personnel Office performs are as follows:

— Calculates the number of soldiers that must be trained
in each specialty.

- Updates the soldiers’ files.

- Updates the units’® files.

- Performs the assignments of the soldiers.

(2) The Personnel Office does not exist 1in a vacuum. A
number of other organizations (EC, BTC, STC and units)
must provide it with timely information in order to be
able to accomplish its mission. The delays reported 1in
the problem definition have their primary origin in the
untimely arrival of these data.

(3} Almost all the procedures that take place in the system
are purposely concentrated at the beginning or the end
of each month. This makes the problem of manually
synchronizing these procedures even more complicated and
the presence of errors more likely.

(4) The volume of information that 1s manipulated 1is so

large that 1t 1s almost impossible to evaluate the

20

soldiers’ requests when performing the assignments with
a manual system.

(S) The general observation 1is that the existing system is
well designed and the problems that have been reported
are mainly caused by the relative difficulty that
characterizes manual systems 1in dealing with great
volumes of information under pressure of time.

3. Develop a high-level model

Now that the analyst has an understanding what the

existing system does, the next step 1s to construct a high-
level logical model of the system. This model will assist
in the design of the new system, It can also be used as a

communications toal with the people in the Personnell Office
and the Management.

There are many techniques for describing a physical
system. GSome analysts prefer the systems flowcharts. Others
think that data flow diagrams are better. The Data Flow
Diagram (DFD) will be used to describe the personnel system.
The reason 1s that at this early stage in the process physical
implementation details should be avoided. The analyst wants to
summarize the functions that are performed by the system, but
not to be influenced by the specific way 1in which these
functions are performed by the existing system. The DFD is
excellent for a high-level description of a system because it
stresses functional rather than physical implementation. It is
also a diagram that is very easy to understand. There are only
four symbols used in this diagram (fig.4.1). A source or
a destination of data 1s represented by a square; a process
in the system that transforms data by a circle or a rectangle
with rounded corners; a data store by an open—-ended rectangle

and data flow by an arrow.

21 ’

Source or destination of data

or Process

Data Store

— Data Flow

Figure 4.1 The Symbols of a Data Flow Diagram

In order to develop a DFD of the system, its four ele-
ments must be i1identified, begining with an identification of
the sources and destina:ions,. From the description of the
system 1t is determined that there are four sources or desti-
nations of data: the EC, BTC, ST7TC, and the units.

After reviewing the system description 1t 1s found
that the processes the system performs are:

- Update Soldiers files

- Update Units files

— Estimate the number of soldiers for each specialty
— Perform assignements.

The description of the system 1is reviewed again,
identifying the data flows and the data stores. At the end of
the enlistment the EC sends a list with the soldiers who
joined the Signal Corps to the SCD. This list is a data flow.
Is it also a data store? The purpose of this list is to update

the soldiers’ files. Most of the time, this updating is not

22

performed immediately after the list is received. Therefore
a data store 1is needed to keep the data until the user is
ready to use them. Continuing in the same way the remainder of
the data flows and data stores are identified.

The next step is to develop the DFD (Figure 4.2). Note
that the Processes and the Data Stores are numbered so that

the reference to them is facilitated.

ENL]ST-
HENT
CENTER

b2

OPDATE
SOLDIERS D4 SOLDIERS
FILE
LIST OF _ |

DI|ENLISTED
SOLDIERS Pl CHANGES OF
D7| SOLDIERS —
ESTINATE STATDS
NOMBER OF fe
SOLDIERS/
BASIC SPECIALTY ONIT LIST OF |
TRAINING I [1f DS|RETIRED
CENTER N LIST OF SOLDIERS — |
]
REQUIRED NOME. ASSIGNMENTS !
D2| OF SOLDIERS | ONIT
PER SPECIALTY , 2
!
- :
LIST OF SOLDIERS Lo ! .
D3| N80 CONPLETED —P—o PROCESS | | |
SPECIAL TRAINING ASSIGK- L ONIT
™1 MENTS B
SPECIALTY l
PRAINING OPDATE
CENTER NITS DS ONITS
FILE

Figure 4.2 The Data Flow Diagram of the existing system

One of the major advantages of a DFD is that it is an
excellent communications tool. Thus it can be used to explain

our understanding of the system to the management.

23

The DFD is presented to the Colonel and he agrees that
this is a good and accurate representation of the system. He
also reminds the analyst that the details of the implementa-
tion of the Assignmerts process will be changed to meet the

soldiers needs. There is no need to change any other process

in the system.

5. Develop and Evaluate Alternative Solutions

The analyst now faces the question of how to solve the
problem. He must consider and evaluate several possible solu-
tions.

One simple solution could be to improve the manual
procedures aof the existing system. It is true, however, that
people are not very effective when dealing with large amounts
of complex data. Therefore, the use of a computerized system
would be better. Should a traditional file processing or a
database system be used? Database processing has a number of
advantages over the file systems. These advantages Dbecome
clearer as the volume and complexity of data increases. Clearly
it is better to choose a Database system. 0On what computer
should the database be implemented? The Generel Staff has its
own Computer Center that runs a number of applications, such
as payroll, mobilization procedures etc. There 1s enaugh
capacity to run our database on the mainframe. There are some
disadvantages to this solution, however. The director of the
Personnel Office, would not have complete control of the
soldiers’ management. Also it is very likely that sooner or
later the other Arms will ask to use the mainframe for their
rneeds, but the Computer Center as it is now organized cannot
undertake the management of all the Greek army soldiers.

Another way 1s to have a centralized machine in the

SCD with a centralized database and implement some kind of a

24

network with the SCD as the central node and the EC, BTC, STC
and the units as peripheral nodes. This may appear to be
extremely expensive but it 1s not necessary to implement a
hardware network. For example the data could he trancsfered via
courier. The advantage of this fully centralized database 1is
that 1t guarantees the integrity of data and i1t also helps the
other units to benmefit from the system by automating part of
their work. This solution also would put full control of the
whole system 1in the hands of the director of the Personnel
Office, something very important for elimination of delays and
other timing problems. The only disadvantage 1is that this 1is

still a very expensive solution, far beyond the scope of the

project.

Finally, a third way 1s to implement the database on a
microcomputer system. This microcomputer would be positioned
in the Personnel Office, The data from the units outside the

SCD will continue to be delivered 1in the same way {(manually
written reports or lists) and entered into thie computer. All

the functione performed by the Personnel 0Office will be auto-

mated, speeding up execution time and eliminating delays
caused by the people in the office, but 1t does not address
delays from outsiders. One possible disadvantage of using a

microcomputer is that it may impose a limit 1n growth which
means that we are not going to be able to go beyond micro-
computer storage capability. One of the advantages of this
solution 1s that it solves the delay and error problems i1inside
the SCD. Even more 1mportant 1is that this system 1s able to
solve the soldiers’ assignments problem, which is one of our
major objectives. Another benefit of this system 1is that it

can be easily expanded to the other Arms.

25

What would be the cost of such a system? First the
type of microcomputer that would be appropriate for this
database must be determined. The main datastore is the SOLDIER
file which contains about 10,000 records, with each record
having about 400 characters. There is always an overhead of
about 20% for pointers, links etc, which results in about 500
characters per record. Therefore the total memory space needed
for this file is: 10,000 x S00 = S Mbytes. If an IBM/AT micro-
computer with a 20 Mbyte hard disk is considered, the system
can be implemented. The cost of such a microcomputer together
with the appropriate peripherals is about %6,000.

6. Select one Alternative

The analyst feels that the 1idea of using the General
Staff mainframe 1s the least desirable-by almost everyone. The
network solution 15 the most attractive but far beyond the
given scope limits. The solution of implementing a database on
a microcomputer 1is well within the limits of both the scope
and the objectives of the project and this is what the analyst
will recommend.

7. Initiate a Development Plan

The purpose of this step of the feasibility study 1is
to provide the management with a rough implementation plan of
the proposed solution, together with an estimate of the
approximate costs for each step in the plan.

The implementation schedule prepared by the analyst is
shown 1in Figure 4.3. Note that this is a rough estimate of the
implementation. The cost figqures were calculated on the basis
of the salary of a major (usual rank of an analyst). The total
cost of this system will be $14,000 ($6,000 for hardware plus

$8,000 for implementation).

26

PERSONNEL ELAPSED
STEP TIME (months)| TIME (months) CGsT
Feasibility 0.5 Completed $ 1,000
Analysis 1.0 1.0 $ 2,000
Design 1.5 1.5 $ 3,000
Implementation 1.0 1.0 $ 2,000
TOTAL 4.0 3.5 $ 8,000

Figure 4.3 The i1mplementation plan

B. Document and present the Feasibility Study

The feasibility study 1is now completed. The analyst
writes a report 1including the results that he thinks are
necessary to support his recommendation. Then he presents his
report in a meeting with the director of the Personnel Office
and the director of the SCD. They agree with the proposed
solution and schedule. Now the analyst is ready to move to the

next step 1n the process: the analysis.

V. ANALYSIS

A. THEORY

1. The Purpose of the Analysis Phase

The purpose of analysis 1is to define the system in
terms of what 1is to be produced. The question of how the

system will provide the required features will be answered

later, during the design phase. Therefore, analysis is a
logical process which does not really solve the problem, but
decides what should be done to solve it. It is obvious that

the importance of this stage is paramount. Decisions made here
will influence the rest of the development process.

Many studies have been conducted which document that
system analysis errors are extremely expensive to correct,
especially 1f they are discovered late in the system develop-
ment process. Figure 5.1 [Ref. 11] 1illustrates the relative
cost to make a change as a function of the phase in which the
change is made. Note 1t is about 100 times as costly to cor-
rect a specification error during system testing as 1t 1s to
correct it during analysis.

Another stydy by James Martin also documented that
about 507 of the number of errors and 75% of the cost of error
correction in operational systems 1s caused by errors during
analysis. Finally there 1s strong empirical connection between
failure to define a system adequately during analysis and
failure to produce it. Nevertheless a great number of managers
and users think of analysis as a time consuming process that
must be minimized. This attitude has its origin in older times
when coding was really the dominating process 1in system deve-

lopment.

28

100

4
R
e
1 S50 | I1BM-SDD
a -
t
1
v 20} DEGTE E
e L~
o
C 10 f 807 v
o Median—-TRW survey
=1 20%
t S5 F +
t
o
2»—
f
1
X 1 +
E
r 0.5 |
r
o
r
0.2
0.1
Require~ Design Code Unit test Accept- Operation

ments and ance
Integration test

PHASE in which error was detected and corrected

Figure 5.1 Relative cost to correct an error

The main deliverable of the Analysis phase is a
document called Functional Specification or System Definition.
Very often this document 1s considered as being a training
manual, an operational handbook, or a management summary, but
it is not. The only purpose of this document 1is to provide a
specification of the functions to be performed by the system
and the constraints within which it must work. The Functional
Specifications will become the starting point for the Design
phase that follows analysis. Depending on the size and

complexity of the system, the fuﬁctional specifications

29)

document may consist of a few pages, or it may be packaged
in several volumes.

2. Techniques of use during Analysis

Unfortunately, as was also the case with the Feasibi-
lity Study, there 1s no universally adopted method for the
Analysis phase and the system’'s functional specifications are
sometimes produced without following any method at all.

Because of the great importance of this phase, many
attempts have been made by computer science people to bring
a level of farmalism to the production of the functional
specifications. As a result of this effort a great number of
different techniques have been produced. These techniques
range from manually driven techniques to fully computerized
ones. Some of them provide a way to generate the system defi-
nition, whatever form this may take. 0Others simply provide
a way of presenting the definition. The best technique is one
that combines both results for the system definition process.
Again some techniques are very effective 1in certain aspects
and for particular types of systems. For the reader who is
interested 1n the details of any particular analysis technique,
the names of the most popular ones together with the reference
of a description of the technique follow:

— Structured Analysis. [Ref. 12]

— PSL/PSA. [Ref. 13]

— Sructured Analysis and Design Technique (SADT). [Ref. 14]
— Controlled Requirements Expression (CORE). [Ref. 15]

- Software Requirements Engineering Methodolaogy. [Ref. 16]
- Finite State Machines (FS5M). [Ref. 17]

— Petri Nets. [{Ref. 18]

- Jackson System Development (JSD). [Ref. 19]

- Software Development System (SDS/RéRE). [Ref. 20]

30

All of these techniques in some way model the system

being defined. The difference 158 that each technique focuses
on a different aspect of the system such as data flow, data
structure, control of flow, etc. Therefore, before choosing

an analysis technique one should first identify which aspect
of the system 1s the most important. In the following section
a very brief and simplified description of the Structured
Analysis method [Ref. 12] is given and will be followed during
the implementation of the Analysis phase.

3. A brief description of Structured Analysis

De Marco [Ref. 12] and Gane and Sarson [Ref. 21] have
defined a methodology which 1s primarily involved with the
application of a particular set of tools to the production
of a Structured Functional Specification. These tools are:

The Data Flow Diagrams, the Data Dictionary and Process

Description Tools. The Data Flow Diagrams (DFD) and their use

were described in Chapter 1V.

The Data Dictionary (DD) 1s used to define the data
flocws and data stores that appear in the DFDs. In other words
the DD 1s a collection of data about data. The basic i1dea 1s

to provide information on the definition, structure and use of

each data element an organization uses. A data element 1s a
unit of data that camnot be decomposed. A DD usually consists
of a listing of all elements found 1in each data staore. For
each data element, information about 1ts name, aliases or

synonyms, description, format, location and other characteri-
stics 1s recorded in the DD.

The Process Description Tools are used to define the
processes in the DFD that cannot be further decomposed and are
called primitive processes (or primitives). Primitives are not

described 1in terms of further DFDs and so require some other

means of definition. Structured Analysis uses Structured
English, Decision Tables and Decision Trees for this purpose.
For each of the primitive processes a description called
mini-~spec is written using these tools.

One way to produce the Functional Requirements using
the Structured Analysis tools is described below.

First explode thé DFD which was produced during the

Feasibility study by taking each process in the DFD and
breaking it down into 1its subfunctions. These lower level
functions, together with their own data stores and data flows,
become processes on a new more detailed version of the DFD.
This decomposition continues to the point of code generation,
at which the analysis phase ends.

The next step is to define the data flows and stores

down to the element level. For each prccess in the exploded
DFD the elements that must appear in the output and input are
identified. Then a list is made of each data store and data
flow together with the data elements it contains. Finally, the
DD is constructed in which information is recorded about the
name, description, format, use, etc of each data element.

The third step during Structured Analysis 1s to

describe each process at a high level, wusing Structured

English, Decision Tables or Decision Trees.

Note that this process 1s not linear. For example,
while the analyst 1is defining the data elements he may find
that he must go back and change the DFD, or a process descrip-
tion might imply the addition of new data elements 1in a data
store.

The exploded DFD, the Data Dictionary and the process
descriptions form the Functional Specifications of the system,
which after being reviewed and apprerd by the user, are pre-

sented to the management.

32

B. THE IMPLEMENTATION OF STRUCTURED ANALYSIS

1. Explode the Data Flow Diagram

The DFD developed during the Feasibility study phase
(Fig. 4.2) 1s the starting point for the Analysis phase. This
DFD contains four processes, one for each major function in
the Personnel Office. During this phase the analyst will con-
sider each process separately and try to decompose 1t into
lower-level processes.
a. Decompose process Pl
Consider the first process, Pl. The purpose of
this process 15 to calculate how many of the new enlisted
soldiers are needed to tre . nm 1n each specialty. Figure 5.2

shows the DFD of this process.

New

Di|Enlisted
l Soldiers ///———“\\\
P1

Estimate

number of Required number
D4| Soldiers soldiers » D2l of soldiers for

for each each specialty

specialty

D5 Units

Figure 5.2 The DFD for process Pl

Trying to decompose Pl we find that it cannot be
divided 1nto functional groups to form separate processes.
Therefore process Pl will not be further decomposed.

b. Decompose process P2

The DFD for process P2 1is shown 1in figure 5.3.
This process updates the Soldiers file with 1information from
the following incoming data stores: D1 (new enlisted soldiers),
D3 (soldiers who completed specialty trainming), D6 (assign-—

ments), D7 (changes of status) and DB (retired soldiers).

33

NEW
ENLISTED
SOLDIERS

D1

SOLDIERS WHO
COMPLETED
SPEC TRAINING

D3

e)

D& |ASSIGNMENTS

UPDATE

SOLDIERS
FILE

CHANGES
CF
STATUS

D7

RETIRED
D8
SOLDIERS

N

Figure 5.3

D4 |SOLDIERS

The DFD of original process P2

These subfunctions are performed by this process:

- P2.1 : Add new records to Soldiers file.
- P2.2 Update frecords in Soldiers file.
~ FR2.3 Delete records from Soldiers file.
The new Data Flow Diagram for process P2 after
this decomposition 1s shown 1in figure 5.4.
NEW P2.1
D1 |ENLISTED ADD new
SOLDIERS RECORDS to
SOLDIERS
N_ file /
SOLDIERS WHO
D3I |COMPLETED l P2.2
SPEC TRAINING UPDATE
RECORDS in
|D6[ASSIGNMENTS ——* SOLDIERS D4|SOLDIERS
file
D7 |CHANGES OF
STATUS
DELETE RE-
CORDS from
D8 |RETIRED ————»{ SOLDIERS
SOLDIERS file

Figure 5.4

Decomposition of process P2

34

Some of the processes in this new DFD require
further decomposition. For example ©process PZ.2 uses three
different data stores that enter the system at different timers
tc updats the Scldiers file. Therefore it could be decomposed

inte three subfunctions shown in figure 5.5.

P2.2.1
UPDATE
SOLDIERS
file with
TRAINED
SOLDIERS

(P2.2.2 \
UFDATE

D6| ASSIGNMENTS » SOLDIERS D4 |SOLDIEER®
file with >
SSIGNMENTS

SOLDIERS WHO
D3| COMFLETED
SPEC TRAINING

P2.2.3

CHANGES
D7 OF
STATUZ

Figure 5.5 Decompcositicon of preocess FLZ

¢. Decompose process F3
The function of P3 is teo update tne Unite file
with the information contained in the data stores DE (assien-
ments® and DE (retired soldiersi. Figure §5.€ shows the origi-

nal version of the DFD for this process.

D6 | ASSIGNMENTE P3

' UPDATE
- UNITS D5|UNITS

RETIKED FILE
D8 ____j—_.
SOLDIEKS

Figure 5.6 Th~ DFD for process F3

The explosion of process P3 1s shown in figure S5.7.

Two new processes are created:

P3.1 :
P3.2 :

DS

RETIRED
SOLDIERS

D&

Fig

use

ure 5.7

P3.1

L SOLDIERS

UPDATE
UNITS file

Update the Units file with the retired soldiers.

Update the Units file with the new assignments.

with
RETIRED

\
P3.2

ASSIGNMENTS ———*

KfSSIGNMENTS

UPDATE
UNITS file

D3| UNITS

with

d. Decompose process P4

Finally process P4 1s considered.

d to assign the newly trained

s0ldiers to units.

Decomposition of process P3

This process 1is

The Data

Flow Diagram for P4 is shown 1in figure 5.8.

D4|SOLDIERS T
P4
SOLDIERS WHO
D3| COMPLETED —— | PROCESS
SPEC TRAINING
ASSIGNMENTS
DS|UNITS —

Fiqure 5.8 DFD of

as

sto

mine who is going to be transfered and data store D4

to get

process P4

D6 |ASSIGNMENTS

Three subfunctions of process P4 can be identified

follows.

re D3

information

The first subfunction

(soldiers who completed specialty training)

about each soldier.

36

(process P4.1) wuses data
to deter-
(soldiers)

This information 1s

used by P4.1 to calculate the transfer points for each soldier
that will decide the priority *or transfer among tbe scldiers.
Thus the need for a new data store D11 (Soldier Qualification
Points) to store this information is identified.

The second subfunction (process P4.2) uses date
store D3 to get the number of soldiers to be assigned and data
store D5 (Units) to read the number of existing and required
soldiers 1in each unit. It then calculates the number of soldi-
ers of each specialty that will be assigned to each unit. This
information will be recorded 1in a new data store D12 (Unit
Needs) .

Finally, a third subfunction (process P4.3) will
assign each soldier to a unit wusing the information contained
in the data stores D11 and D12.

The decomposition of process P4 is shown in figure

[Pa.1 ‘\

CALCULATE

)

TRANSFER
D4 |SOLLDIERS POINTS FOR

\gQCH SOLDIE

SOILDIER
D11| GUALIFICATION
POINTS

(P4A.3)

ASSIGN

SOLDIERS WHO EACH
D3 |COMPLETED SOLDIER D& ASSIGNMENTS
SPEC TRAINING TO A UNIT

| D12| UNIT NEEDS

Pa.2
CALCULATE

UNITS NEEDS
FOR EACH
SPECIALTY

DS JUNITS

Figure 5.9 Decomposition of process P4

37

2. Define the Data Elements
One objective of analysis is to define the data flows
and data stores down to the element level. To accomplish this
each process in the data Flow Diagram is considered separately

and the data that must appear as its outputs and inputs are

defined.
a. Using process Pl
Process Pl calculates the number of soldiers to
be trained in each specialty. Therefore its output, which is

stored 1in data store D2, will contain at least two elements:
The SPECIALTY and the REQUIRED SOLDIERS per specialty.
To calculate the Required Soldiers, process Pl
uses the following elements:

(1) Total number of new enlisted soldiers.

(2) Total number of soldiers per specialty
required to satisfy the current unit’'s needs.

(3) Total number of soldiers per specialty
to retire in the next 4 months.

(4) Number of soldiers currently undergoing
training in each specialty.

Data store D1 (New Enlisted Soldiers) provides
information for element (1). Therefore, D1l must contain a
field: TCTAL NUMBER OF ENLISTED SOLDIERS.

Next consider element (2). Data store D5 (Units)
in the form that it is used now consists of a UNIT NAME field
followed by one field for each SPECIALTY, which is divided
into subfields for the EXISTING, REQUIRED and COMPLEMENT
number of soldiers for this Specialty. Thus, element (2) can
be calculated by adding all the Complement fields of one

specialty in all units.

As for element (3) the remaining time of service
for each soldier 1s needed. One way to obtain this information
i1s to include a field REMAINING TIME in D4. Process Pl will
read this number for each soldier and decide if it is greater
or less than 4 months. But the Remaining Time of Service is
a8 value that must be continuously updated (it changes every
day). Is there a more convenient way to derive the desired
information? One way 1s to calculate the date when the remai-
ning service time becomes 4 months. Then Pl will compare the
current date with this date and if the current date is already
past this date then the remaining time will be less than four
months. This date 1s calculated by adding the duration of
service to the date of enlistment to get the retirement date
and then subtract 4 months from 1it. Therefore data store D4
must provide the elements DURATION of SERVICE and DATE of
ENLISTMENT. For purposes of soeeding up the execution of P11,
it may be better to store this date in D4 after it is calcula-
ted for the first time.

Finally, element (4) (i.e., the number of soldiers
currently enrolled in training in a given specialty X) must be
calculated. We should be able to find this number by counting
the number of records in D4 with COMPLETED TRAINING = False
and SPECIALTY = X. Unfortunately the SPECIALTY field cannot
be updated before the completion of specialty training. There-
fore a new data store will be needed to provide the soldiers
enrolled in training in each specialty. This will become data
store D14 (CURRENTLY TRAINING SOLDIERS) and it will contaain
the fields ID_NUMBER and SPECIALTY. This data store will be a
list submitted by the Training Center every month together

with D3I,

39

The needed number of soldiers per specialty can
now be determined if the specialty name is known. None of the
data stores 1in the DFD seems to contain this information,
though. O0Obviously something 1s missing. The user 1s asked
where the nmames of the specialties are stored. The answer is
that they do not use a data store for the names of the ten
specialties, because they can easily remember them or they can
look them up on a piece of paper, obviously not feasible for a
computerized application. A new data store is required to keep
the names of the specialties. This data store will be D? (SPE-
CIALTIES) with one data element SPECIALTY NAME.

The DFD of process Pl is updated to show the new
data stores D? and D14 (Figure 5.10).

NEW
D1 |ENLISTED
SOLDIERS
[pafsoLprirs —— |
P1
ESTIMATE
NUMBER OF REQUIRED NUMBER
DS |UNITS — | SOLDIERS D2|OF SOLDIERS FOR
FOR EACH EACH SPECIALTY
SPECIALTY
D9 |SPECIALTIES \ y
CURRENTLY
D14|TRAINING
SOLDIERS

Figure 5.10 Process Pl after the addition of D9 and D14

Following 1is a list of the data stores used by
process Pl, together with the data elements they contain:

~ D1 : NEW ENLISTED SOLDIERS
1. Total number of enlisted soldiers

~ D2 : REQUIRED SOLDIERS FOR EACH SPECIALTY

1. Specialty
2. Required soldiers for specialty training

40

— D4 : SOLDIERS

1. Date Enlisted

2. Service duration

3. Date when remaining service equals four months
- D5 : UNITS

1. Unit name

2. Specialty

3. Required number of soldiers

4, Existing number of soldiers

S. Caoamplement number of soldiers

~ D9 : SPECIALTIES
1. Specialty

— D14: CURRENTLY TRAINING SOLDIERS
1. ID number
2. Specialty
b. Using the remaining processes in the DFD
Proceeding in the same manner the data elements
that are required by the rest of the processes in the Data
Flow Diagram are identified. New data stores are added and the
DFD 1is expanded where necessary. At the end of this process
the DFDs for the pfocesses P1 through P4 have taken the form
shown in figures A.2 through A.S5 of Appendix A. Also the data
stores are shown 1in section B.1 of Appendix B. Note that a
new data store, HISTORY, was added to keep the information
about a soldier after he has retired and before his record 1is
deleted from the Soldiers file.

3. Caonstruct the Data Dictionary

For each data element already registered 1in a data
store, information 1is recorded about 1its name, aliases,
description, format, location, etc. The Data Dictionary is
shown in sections B.1 and B.2 of Appendix B.

4, Write Process Descriptions

As previously discussed the purpose of this step is to
describe each process in the DFD at a high level. There are
many available tools to be used for this purpose such as,
Decision Tables, Decision Trees and Structured English.

Structured English was chosen to document the processes. The

41

complete documentation is shown
Appendix C.

S. Review the Functional R

in figures C.1 through C.11 of

equirements

Working with the user
reviewed to decide if they are

During this review 1t

the Functional Requirements are
complete.

was found that there are two

more processes that need to be added to the system.

The data stores Di, D3, D7, D8 and D14 enter the
system in manual form. The computer cannot process manual
files. Therefore a new process PS5 (ENTER DATA) 1is required
which will transform the manual data stores into electronic
files that can be manipulated by the computer. Figure S5S.11
shows the DFD for this new process. The exploded process PS5 is
shown 1in figure A.6 of Appendix A and its algorithm descrip-
tion 1in sections C.12 through C.16 of Appendix C. Finally a
last process P& (GENERATE REPORTS) is needed. This process
prints ocut the reports that the Personnel Office of the SCD

RETIRED | RETIRED
D8; SOLDIERS I D8
(manual list) SOLDIERS
SOLDIERS WHO SOLDIERS WHO
D3| COMPLETED — » D3| COMPLETED
SPEC TRAINING SPEC TRAINING
(manual list)
- PS
CHANGES ENTER CHANGES
D7|0F STATUS —_—> * D7 | OF
(manual list) DATA STATUS
—
NEW ENLISTED] NEW
D1]SOLDIERS D1|ENLISTED
(manual list) SOLDIERS
CURRENTLY CURRENTLY
D14 |TRAINING SOLDIERS— * D14 TRAINING
(manual list) SOLDIERS

Figure 5.11 The DFD of proces

42

s PS5

must send to the training centers and the units (i.e., the
Assignments list and the list with the Training needs).

The Data Flow Diagram for process P66 1is shown in
figure 5.12 and its exploded form in figure A.7 of Appendix A.
Also the algorithm description for this process 1is contained

in sections C.17 and C.18 of Appendix C.

REQUIRED NUMBER
D2 |OF SOLDIERS FOR —
EACH SPECIALTY

LIST WITH
TRAINING

GENERATE]

———»|REPORTS

LIST OF
——1 ASSTGN-
MENTS

D& |ASSTGNMENTS —

Fiqure 5.12 The DFD of process P&

The final version of the system Data Flow Diagram is
shown in figure A.1 of Appendix A.

6. Present the Functional Requirements to the Management

At the beginning of this chapter it was mentioned that

the process of producing the Functional Requirements for the

system 1is not linear. Very often the analyst backtracks and
repeats certain steps in the process. Finally it is felt that
the Functional Requirements are complete and they are
presented to the management. The contents of Appendices A, B

and C form the Functional Requirements of the system.

VI. SYSTEM DESIGN

A. THEORY

1. The Purpose of the System Design

During the analysis stage the analyst defined what 1is
going to be produced. The next step is to answer the qgquestion
of how to produce the system and this is the purpose of the
Design phase.

The majority of the literature that exists on the
different steps in the development of a system views Design as
one big step which takes the Functional Specifications produ-
ced during Analysis as its input and designs a system that
satisfies them. A number of people, however, believe that 1t
is better to break the Design stage 1n two phases: System
Design and Detailed Design.

During System Design it is determined in general how
the system will be implemented by identifying different alter-
native solutions and selecting one alternative that best
satisfies the system needs.

During Detailed Design it is determined how specific-
ally the selected alternative should be implemented.

However, no matter which design approach is followed
the system designer must always keep in mind that the final
product of this phase should be a system design which first
provides all the required functions and second can be easily
implemented.

2. [dentify Alternative Solutions

System Design begins with a search for different
systems that meet the user ' s requirements. To make this search

easier each one of the system’'s components 1s considered

44

separately. A system wusually consists of four components:
Data, Hardware, Software and People.
a. Data alternatives

The main function of any computer system 1s data
processing. The way 1in which data is organized greatly affects
the system structure and most of the time 1ts effectiveness.
There are two primary data alternatives.

One way 1s to organize data in files, which exist
independently of each other, and their structure 1is distribu-
ted across the application programs. Another alternative is to
utilize a database.

There are advantages and disadvantages related to
each of the two alternatives and the system designe+r should
evaluate them and choose the one that best satisfies the needs
af the particular application. Sometimes, a combination of
these two alternatives should be used.

b. Software

The evaluation and selection of the appropriate
software for the system is usually a difficult and time consu-
ming task. During this step different programming languages
must be evaluated that can be used to write the applications
programs. The operating system to be used should also be con-
sidered. The most difficult decision, however, 1s to choose a
Data Base Management System (DBMS) when a database is i1nvolved.

The functions provided by a DBMS must match close-
ly the user requirements. Unfortunately, most of the existing
DBMSs do not provide the same functions and the same interfa-
ces and therefore, we must proceed very carefully 1n choosing
the correct DBMS.

Gordon Everest 1in his book '"Database Management"”

has devoted a whole chapter to the DBMS selection and aquisi-

45

tion process [Ref. 22]. For the reader who needs more details
on this process, the reference provides a very good guide.

There i1s a substantial difference between a DBMS
for a personal computer and one for a large system. First of
all the size of the databases that must be managed by a perso-
nal computer DBMS is many orders of magnitude less than the
size of a commercial database. Also the personal systems are
usually intended for use by only one persan, while the large
mainframe systems are serving concurrently many different
applications and users. Because of these differences a commer-—
cial DBMS should be much more saophisticated and able to
coordinate the complex database activities. Therefore, 1t is
always much easier to select one aof the many low-cost DBMS
packages available in the market for microcomputers.

€. Hardware

In most cases the management wants the new system
to run on existing hardware. I1f this is possible without any
major additions or modifications, it is wise to keep the
current system in place. Sometimes, however, new applications
require a new computer system. Also the involvement of a
database usually implies the use of special hardware with more
main and secondary storage space, faster CPU etc. The DBMS

vendor will provide information on the hardware needed to be

used.
d. Peaple
Finally the people who are invalved in the system
are considered. We must decide who the end—-users are going to

be and the extent of training required.
I1f a database is involved then it must be decided
whether a Data Base Administrator (DBA) will be needed. The

function of the DBA is "to protect the database and to ensure

46

that it is structured and used so as to provide maximum bene-
fit to the community of users" [Ref. 9: p. 30]. When a great
number of different applications and users are using the data-
base the presence of a DBA becomes a necessity. The DBA could
be a single person or a whole team. The cost of the DBA staff
should be considered as part of the cost of the alternative
being evaluated.

3. Select one alternative

The next step is to select one of the different alter-
native sets of the system components i1dentified during the
previous step.

A number of different techniques exists that assist in
the selection of an alternative solution. David Kroenke
(Ref. 9] has described three such techniques which are briefly
reviewed below.

The first technigque 1is called Subjective Evaluation.

This approach 1is the cheapest, quickest and most frequently
used. The purpose is to subjectively evaluate each alternative
and to make an intuitive decision. Thus the criteria for
comparing alternatives are first identified. Next the criteria
are weighted according to their relative importance. Then,
each alternative is subjectively scored by the members of the
evaluation team. The total score for each alternative is then
calculated and the alternative with the highest total score is
selected.

Cost/benefit analysis 1is another technique, which

gives a reasonable picture of the costs and benefits associa-
ted with each alternative solution, so that management can
compare the alternatives and decide which one is a good
investment. First the costs of developing each alternative

system are identified. The cost of each phase in the system

47

development 1s estimated separately and the total cost of
development 1s the sum of the<«e costs. Next the cost of main-
taining and operating the system after 1t 1s i1mplemented 1s
estimated and 1s added to the development cost. The expected
benefits from the use of the system 1s estimated next.

Note that the development costs occur only once. The
operating costs and the benefits occur continuously after the
system becomes operational and are not equally distributed
across time. Also, as 1s the case with most computerized
systems, they usually become obsolete in a few years. Therefo-
re it is wise to estimate the return on investment for any
system for a period no longer than five years. 1f the benefits
during this period do not exceed the sum of the development
and operation costs them this system might not be feasible.

A third technigue suggested by Kroenke is to use a
combination of both of the above techniques. Subj)ective evalu-
ation can be used to reduce the number of alternatives tc two
or three and then perform a cost/benefit analys:s on these

alternatives to choose the best one.

B. THE IMPLEMENTATION OF SYSTEM DESIGN

1. Identify Alternative Solutions

During the Feasibility Study phase a number of alter-
native solutions to the problem were developed and evaluated.
The result of that evaluation was that the implementation of a
database system on a microcomputer 1s the most desirable
solution. These results will be used during System Design to
help make the effort of identifying alternative solutions
easier.

a. Data Alternatives

The system can be implemented using different data

processing technologies. One way 15 to continue using the

48

exlsting manual files for all processes 1n the system, except
tor the assignments processing for which traditional file
processing can be used. Another option 15 to implement the
whole svstem wusing file processing. Finally, a third option
15 to store all data 1n a single database.
b. Software
In the market there are a large number of DBMSs
(over one hundred) that run on microcomputers. Most of these
DBMSs provide a programming language that can be used to write
application programs when all processing requirements cannot
be handled by the database functions provided by the DBMS.
Some of these full function DBMSs are listed below:
- DATARLEX from Data Access Corp., Miami, FL
dBASE 11, II1 from Ashton-Tate, Culver City, CA
- INFORMIX from Relational Database Systems, Sunnyvale, C#
~ MAG/base 111 from Micro Applications Group, Canoya Parik CAH
mMDBS+QRS from Micro Data Base System Inc., Lafayette, IN
OPTIMUM ftrom Uveon, Denver, CO
~ ORACLE from Oracle Corp, Menlo Park, CA
0 PRO-4 from Quick n Easy Products, Langhorne, PA
R:BASE from Microrim, Bellevue, WA
- REVELATION from Cosmos., Seattle, WA
- UNIFY from Uni1fy Corp., Portland, OR
C. Hardware
As described 1n the feasibility study the micro-
computer solution 15 the only acceptable one for the current
application,
d. Peoaple
Currently s1x men are working 1n the Soldier Sec-
tion of the SCD Personnel 0Office (a captain, two serqeants and

three suldiers). None of t hese needs to be replaced 1t the

19

current system 1s maintained. If it is decided to implement
38 database system wusing a microcomputer then at least four
people will be needed: One captain, aone sergeant and two sol-
diers. These people will be required to have some knowledge of
microcomputers.

2. Select one Alternative

After the evaluation of the different alternative
solutions and in agreement with the results and constraints of
the feasibility study, the system components are selected as
follows:

a. Data

A database will be used to store all the data in
the system.

b. Software

The dBASE 11l Plus package was chosen as the DBMS.
During the evaluation process a number of other DBMS packages
were found that provide almost the same functions as dBASE II1
Plus. The prices of these packages were also similar. Some of
the reasons for selecting dBASE III Plus are:
— Product stability.

dBASE 1I1I Plus (was dBASE Il before) has been in the
market for a long period and the number of people using
it is continuously increasing.

— Maintenance support.

There are many enhancements of the product and the users
interviewed were generally satisfied by the way the vendor
responds to occurring problems.

— Documentation and Training.

The documentation 1s very well written and readable.

There are also several references one can find that make

the learning and use of dBASE 111 Plus easier.

50

The dBASE I11 Plus features, limitations and
software/hardware requirements are described below.

dBASE III Plus 1is a relational DBMS which runs on
IBM microcomputers or compatible machines and stores informa-
tion in relational data tables.

The database can be processed in two ways. One
way 1s interactive command processing in which the data in the
database 1s manipulated by means of commands entered interacti-
vely from the keyboard, and the results are displayed an an
output device such as a monitor or a printer. A second way 1is
through application programs. An application program 1is a
collection of dBASE IIIl Plus commands stored in a file. These
programs can be loaded and executed by the DBMS. This capabi-
lity mekes dBASE 111 Plus useful for application development.

The database files used by dBASE I1I Plus can hold
3 maximum of:

~ One billion records

— Two billion bytes

- 4000 bytes per record
- 128 fields per record
- 254 bytes per field

dBASE 111 Plus allows a maximum of 15 files to be
open at once including database, index, memo, procedure and
program files. This sounds like a serious limitation but if
the application programs are carefully designed these problems
can be avoided. Note that this limitation is imposed by PC_DOS
and not by dBASE I1I1.

dBASE II1 Plus 1is designed to run on the IBM PC,
IBM PC XT, IBM PC AT snd the IBM-compatible microcomputers.
It requires MS_DOS or PC_DOS version 2.0 or later. The minimum

memory requirement 1is 256 K under DOS version 2.0 or 2.1.

51

dBASE 11l requires mare memory to run under DOS 3.0 or above
and if you want to replace the dBASE 11l program editor with
an external editor then at least 384 K of memory will be requ-
ired. For a serious application development the microcomputer
should have at least 512 K main memory, a 360 K floppy disk
and a 10 megabyte hard disk.
c. Hardware
An IBM personal computer AT with a 20 Mbyte hard
disk and two 360 K floppy disks is recommended for implementa-
tion. Also a monitor and a printer will be used as output
devices.
d. People
One captain, one sergeant and two soldiers with
some knowledge of computer science and especially on micro-

computers will be required.

52

VII. DETAILED DESIGN

A. THEORY

1. Purpose of the Detailed Design

As stated before the purpose of the Detailed Design
phase 1is to determine how specifically the system will be
implemented.

During System Design the solution strategy which best
satisfies the user’'s requirements was selected. If this
solution 1nvolves a database then the Detailed Design should
be divided in two tasks: The Database Design and the Design of
the Applications Programs.

2. Database Design

The Database Design is usually divided into two stages:
Logical Database Design which 1s entirely independent of limi-
tations 1mposed by the hardware or any particular DBMS and
Physical Database Design which 1s dependent on the DBMS select-
ed during System Design.

a. Logical Database Design

During this stage the database logical structure
1s developed by determining the actual contents of the data-
base 1in a way that satisfies the user requirements without
using any particular DBMS.

What are the steps that should be followed during
logical database design? Although many techniques have been
defined, unfortunately once again there 1s no algorithm to
follow. David Kroenke in his book ‘"Database Processing"
[Ref. @: p. 177] writes:

"... database design is an intuitive and artistic process.
There is no algorithm for it. Typically, database design 1s an

iterative process; during each iteration the goal is to get
closer to an acceptable design..."

53

The different techniques that exist for logical
database design vary from very general and abstract to very
detailed techniques that focus only on specific aspects of the
database . The process described next provides a simple way to
create a logical database design and includes the major steps
found in most techniques.

First the data to be stored in the database is
identified. Using the Data Dictionary (DD) prepared during
Analysis, synonyms are identified. Synonyms are two or more
different names for the same data element. It is desired to
remove synonyms from the database in order to eliminate
ambiguity and redundancy. For this reason all different names
of the same data element are replaced with one standard name,
and a new revised version of the Data Dictionary results.

During the analysis phase every data element that
is needed by the system was recorded in the DD. Next a more
detailed examinaticn of the DD is required in order to identi-
fy data elements that cannot be part of the database or must
be further analyzed. In this way a final version of the DD is
created.

The next step in the logical database design pro-
cess 1s to specify the logical database records. By examining
the DFD of the system the data stores and data flows which
should become records in the database are identified. The data
elements, alias fields, that each record should contain are
already listed in the DD. Obviously this step is very straight-
forward and should not be difficult to execute. However, some
additional items must be acomplished. 0One is to determine
which records should be combined or separated. A closer exami-
nation of the process descriptions of the functional require-

ments may reveal that some processes utilize only a small part

54

of the information stored in some of the records. Performance
could then be improved by breaking such records into more
records according to how they are used by each process. In
other cases two or more records should be combined into one
if, for example, they are used simultaneously by most proces-
ses. In his effort to determine which records should be joined
or separated the system designer should also be guided by the
anticipated future use of the records.

Now that the final structure of the database has
been defined one final item is required: determine the primary
key for each record. It is required that each record be
uniquely identified in any of the files in the database. To do
this one or more of the fields 1in the records are used as
identifiers. These fields are called keys. It must be ensured
that a selected key wuniquely identifies a record and this is
not always an easy Jjob.

b. Physical Database Design

This stage takes the logical database design as
its input and transforms it into a form that is acceptable to
the hardware and to the Data Base Management System (DBMS)
that will be used.

Since this transformation varies greatly from one
DBMS to another it is not possible to provide a general des-—
cription of the process. In order to be able to perform a
physical database design using a specific DBMS, the designer
should study its documentation first.

3. Design of the Application Programs

After the database has been designed the next step is
to design the application programs. This design will later
result 1In code using the Data Manipulation Language (DML)

provided by the DBMS. At this stage we work independently of

55

any particular programming language, designing the programs
that will call on the DBMS in order to provide the desired
database service.

The designer’'s goal is to identify the applications
programs and then develop a set of specifications for each
praogram that will contain the required information to support
writing the actual code during the next stage: the Implemen-
tation.

It is amazing that so many people have described so
many different program design techniques. Terms 1like Modular
design, Top-down design, Bottom—up design, Structured design,
Stepwise Refinement, Systematic Programming, Transform Analy-
sis, Transaction Analysis etc, are well known to almost every
computer science student. There is also extensive debate as to
which is the best technique. In this presentation of a strate-
gy for»idesigning application programs no particular design
technique will be followed in detail, although there is some
similarity with Structured Programming. A good designer should
know as many different techniques as he can but should not
commit himself to only one of them.

The programs in an application do not run independent-
ly of each other. Ore program is usually called by another and
either during or after execution, passes control to another
program. The hierarchy and the flow of control among the
application programs of a system can be represented using a

Structure Chart.

A structure chart 1is a pictorial representation that
uses simple boxes and statements to describe the functions in
a system. To illustrate this concept Figure 7.1 shows the
structure chart for a very simple problem: boil an egg. Notice

that the processing flow in the chart 1is from left to right.

56

Also note that all subfunctions are grouped under a main

control function.

BOIL
AN EGG

l | l l

PLACE EGG COVER EGG TURN BOIL EGG
INTO POT WITH WATER HEAT ON FOR 5 MIN.

Figure 7.1 A simple Structure Chart ~

The first step in the process of designing the appli-
cations programs is to construct a Structure Chart. The Data
Flow Diagram of the analysis stage will provide all the infor-
mation needed. The processes in the DFD will become programs
in the Structure Chart. During analysis each process was
decomposed into subprosesses up to the point where each proc-
ces performed only one single task. Therefore, there is no
need for further decomposition of the programs. However, these
programs must be grouped under control programs which will
determine the order of execution. A main control program will
be on top of the other control programs.

In order to group the processes under common control
modules automation boundaries are drawn in the DFD. As an
example, suppose that certain processes in the DFD are perfor-
med daily, while others are performed weekly or monthly. A
line is drawn to surround all daily processes and another line
for the weekly or monthly processes, thus establishing automa-
tion boundaries in the DFD. Care must be taken not to include
in the same automation boundary processes with timing con-
flicts., WNext a structure chart is prepared for the processes
in each automation boundary. Finally, by connecting all these
structure charts under a main control program, a structure

chart for the whole system is realized.

57

Daama—

In order to make the reference to any of the modules
in the chart simpler, names and numbers are assigned. It would
be wise to use names that conform to the constraints of the
programming language to be used. Numbers assigned to each box
in an aorderly fashion facilitate reference even more. A good
method for assigning numbers to modules that also shows the
hierarchy and functional dependence among the modules 1in a
structure chart 1is described below. (A full description of
this method is caontained in [Ref. 23]).

a. Number the main control module by suffixing a digit with
as many zeros as the number of subordinate levels in the
structure chart. In the example 1in Figure 7.2 there are

three such levels. Therefore, the main control module
should be numbered "“1000".

b. Assign numbers to the modules in a subordinate level by
incrementing the left-most zero digit of the controlling
module by one proceeding from left to right.

c. Repeat step (b) wuntil all modules have been assigned
Nnumbers.
1000
A
1100 1200 1300
B C D Level 1
1110 1120 1310
E | F ! G Level 2
1311 1312 1313

H | I I J Level 3

Fiqure 7.2 Numbering the modules in a Structure Chart

58

The advantage of this numbering scheme is that by
knowing the number of a module one can tell which module
invokes it, by replacing the last non-zero digit with a zero.
For example module 1312 1is called by module 1310, which in
turn is called by module 1300 which 1is finally called by
module 1000. Therefore it is easy to construct the structure
chart by simply knowing the numbers of all the modules.

The weakness of this method is that it cannot be
applied 1if a certain module in the system invokes more than
nine other modules, an occurence that 1is very unusual for
small and medium systems.

The second step 1in the design of the application
programs 1is to create a table that contains a brief descri-
ption of each module 1in the structure chart. This table 1is
usually called Visual Table of Contents or VTOC and serves as
a quick reference guide when someone wants to know the purpose
of a program.

Finally the third step is to document the programs in
the structure chart by creating an IPO (Input/Output/Process)
chart for each program. As its name implies, the IPO chart of
a module shows the inputs to, outputs from and the process
performed by the module. The data stores and flows shown in
the DFD are the sources of the inputs and outputs. The algo-
rithm descriptions of the Functional Specification will be
used to document the process. To describe the process steps
on each IPO chart Structured English, pseudocode, or a flow-
chart may be used.

The system Structure Chart, the VTOC and the IPO
charts produced during this stage provide an increasing level

of detail and together they constitute a complete design of

the applications programs.

B. IMPLEMENTATION OF THE DETAILED DESIGN

1. Database Design

a. Logical Database Design
(1) Identify the data to be stored

The process is initiated with the Data Dictio-
nary (DD) constructed during analysis. A summary of all the
data items described in the DD is shaown in Figure 7.3 (for the
moment do not consider the last three columns). Each data
element is now examined in detail.

First synonyms are identified. 0One example 1is
the data elements UNIT NAME, UNIT, UNIT ASSIGNED TO, and
ASSIGNED UNIT, found in the data stores D5, D8, Dé6 and D4,
respectively, which are in fact the same data element under
different names. The term UNIT is chosen to be the common name
and a reference number 1is entered 1in the column SYNONYMS.
Similarly DATE ASSIGNED of D4 and DATE OF REPORT of D& can be
represented as one element. The remainder of the data elements
in the DD are similarly analyzed. The result of this work is
shown in the column SYNONYMS in Figure 7.3.

Next data that cannot be included in the data-
base are considered. For example, consider the data element
TOTAL NUMBER OF ENLISTED of data store Dl. It is undesirable
to include this element in every record in D1. Unfortunately,
the relational model does not allow records of variable length.
The solution is to create a separate file or to ask the user
to enter this information when needed. The second solution is
prefered and the DELETE column for this element is marked.

Data that must be analyzed are considered next.
For example, SOLDIER NAME 1is a data element consisting of
three subfields: FIRST NAME, MIDDLE INITIAL and LAST NAME.

This structure 1is not allowed by the relational model.

60

Therefore,

this element

is divided

into three data elements

and the ANALYZE column in the DD is marked.

[
In
Lad N
IL 0
s/ DatTa TLENEN? TIPE (NIDTE DaTL STORE ; { !
i
1 23 456717 8 81011121314]
1 | ID_KOMBER NOMERIC| 7 |+ 4+ + 44+ + 4
2 | SOLDIER NAME CHAR 36 |+ + 0+ + + 4 +
3] DATE ENLISTED DATE 8 |+ + +
4 | SERVICE DORATION NOMERIC| 2 |+ +
5 | CLASS CHAR I o[+ + +
6 | MARITAL STATOS CHAR T 14 +
7 | NOKBEE OF CHILDREN NOMERICI 1 |+ 4
8 | BINANCIAL STATUS CHAR 1 |+ +
9 | PANILY SUPPORTER CEAR 3+ +
10 | POMBER OF BROTBERS IK SERVICE NONERIC| 1 |+ +
11 | SPECIAL REASORS FOR TRANSEER LOGICALI 1 |+ +
12 | PRERERED ONITS CHAR 2 |+ + +
13 | ADDRESS CHAR 6 |+ + + +
14 | TOTAL NOMBER OF ENLISTED NOMERIC 4 |+ +
15 | SPECIALTY CHAR 8 + o+ o+t AR
16 | BEQUIRED SOLDIERS FOR SPEC TRAINING |NOMBRIC| 4
17 | ASSIGNED ON]T CRAR 7 + 37
18 | DATE ASSIGNED DATE 8 +
16 | COMPLETED TRAINING LOGICAL| 1 +
20 | DATE WHEN REMAINING SERVICE ¢ 4 MON.|DATE 8 +
21 | ONIT NAME CRAR 7 + + N
22 | REQUIRED NOMBER OF SOLDIERS NOMERIC| 3 4
23 | EXISTING NOMBER OF SOLDIERS NOMERIC; 3 +
24 | COMPLEMENT NOMBER OF SOLDIERS NOMERIC| 3 +
25 | ONIT ASSIGNED 10 CHAR 1 + k¥
26 | DATE OF REPORY DATE 8 + 18
27 | CHABGED NAME CHAR 36 + 2
28 | CHANGED SERVICE DORATION NOMERIC! 2 + 4
29 | CBANGED MARITAL STATDS CHAR 7 + 6
30 | CHAKGED NOMBER OF CHILDREN BONERIC| | + 7
31 | CEABGED FIBARCIAL STATUS CHAR l 4 8
32 | CHANGED TAMILY SOPPORTER CEAR 3 + §
33 | CHANGED BUMBER BROTHERS IN SERVICE |MNOMERIC! + 10
34 | CBANGED SPECIAL BEASONS FOR TRANSFER|LOGICAL! 1 + 11
35 | CEANGED PREFERED UNITS CHAR 2 + 12
36 | CEARGED ADDRESS CHAR 69 + 13
37 | onlt CHAR 7 +
38 | DATE BETIRED DATE 8 + +
39 | QUALIFICATION POINTS NOMERIC| 3 +
40 { BEEDS ROMERIC| 3 +

Figure 7.3

The data items of the Data Dictionary

Finally, the type and width of each data
element 1s considered. Why should FAMILY SUPPORTER be a
three—-byte character field instead of an one-byte logical
field? Or the MARITAL STATUS field can be changed to an
one-byte character field which will store M for Married, D for
Divorced, S for Single and W for Widowed provided that a short
explanation is given to the user on the screen when he runs
the program. Also, there 1s no need for ID_NUMBER to be a
numeric field since there are no arithmetic computations
performed on 1it. A character field occupies less memory space
and can be manipulated much faster than a numeric field. A
summary of the Data Dictionary is shown in Figure 7.4.

(2) Specify the logical database records

Each data store 1in the DFD will normally be
transformed 1ntoc a database file. The data elements of each
file are showrn 1n the Data Dictionary 1i1n Fiqure 7.4. What
files should be combined or separated? To determine this the
chart 1n Figure 7.5 will be utilized. This chart shows which
data 1tems of each data store are used by each process. For
example process P2.1 uses the ID_NUMBER of both data store Ul
and D4. With the help of this chart consider data store D4
which 1s the largest data store 1n the system. D4 also con-
tains more records thanm any other data store. This means that
significant memor, space will be occupied by D4 and therefore,
the process of loading it will take considerable time. On the
other hand observe that some of the processes make use of only
a small part of this data store. For example, process P4.3
only uses the names of the three units of preference. After
carefully looking at all processes it 1s decaided that data
store D4 should be divided into four data stores as shown 1in

Figure 7.6.

62

5/ DATL TLENENR? TTIPL {NIDTE DiTA S5T0R1L
12345678 81011121314

1 | ID_NOMBER CHAR T |+ + 4 t o+ 4 + 0+ +

2 | FIRST NAKE CHAR 15 |+ + o+ o4+ +

3 | LASY RAME CRAR 20 1+ + 4+ + 0+ 4+ +

4 | BIDDLE IRITIAL CBAR 1 |+ t 4 t o+t +

5 | DATE ENLISTED DATE 8 |+ + 4

6 | SERVICE DORATIOR ROMERIC| 2 |+ + 4

7 | CLASS CBAR 3 1+ + +

8 | MARITAL STATOS CEAR 1 |+ + +

9 | NOKBER OF CBILDREN NOMERIC{ 1 |+ 4 +

10 | FINARCIAL STATOS CRAR 1 |+ + +

11 | BAMILY SUPPORTER LOGICALl 1 |+ + +

12 | NOMBER OF BROTHERS IN SERVICE NOMERIC| 1 | ¢ + +

13 | SPRCIAL BEASONS FOR TRANSFER LOGICAL{ 1 |+ + +

14 | PREFERED ONIT 1 CHAR T |+ + +

15 | PREFEBED ONIT 2 CHAR T |+ + 4

16 | PREFERED ONIT 3 CBAR T |+ + 4

17 | STREE? CHAR 15 |+ + + +

18 | CITY CEAR 20 [+ + + +

19 | STATE CHAR 15 |+ 4 4 4

20 | I1p CHAR 5 |+ + + +

21 | PHONE CHAR 1 |+ + + 4

22 | SPRCIALYY CEAR 8 O A A O 4

23 | REQUIRED SOLDIERS FOR SPECIALTY TRAINIRG|NOMERIC| 4

24 | ONIT CEAR 7 + o4+ + + 4

25 | DATE ASSIGNED DATE 8 + +

26 | COMPLETED TRAINING LOGICAL{ 1 +

27 | DATE WEEN BEMAIKING SERVICE « 4 HON. DATE 8 +

28 | REQUIRED WOUKBER OF SOLDIERS NORERIC; 3 4

29 | EXISYING ROMBER OF SOLDIERS NOMERIC} 3 +

30 | COMPLENENT NOMBER OF SOLDIERS NOMERIC| 3 +

31 | DATE RETIRED DATE 8 t +

32 | QUALIERICATION POINTS NOMERIC| 3 +

33 | NEEDS NOMERIC| 3 +

Figure 7.4 A summary of the Data Dictionary

Another use of the chart in Figure 7.5 1is to
help determine which fields are redundant. For example, the
FIRST NAME, LAST NAME and MIDDLE INITIAL fields can be removed
from data stores D3, D6 and D8 since no process uses these

fields.

63

i«

"893u34004d pUE 33USWS[S BleD Usanyaq drysuolje[ad a'lf G) 9andLy
e e g e e e e Dl e s S I P
up i i SQ¥IN £C
I 1! SIN10d NOL4VOL417V0D ¢
8 01's 0r's qag1isy iva 1¢
§ 1 4§ S §1S4R1Q105 40 GRON INIRITAROD OE
1 s §{S4I1ET05 40 4AARON ONTLSIXE 61
§|S431070S 40 HIERON J3¥10d3Y 87
b bISELNOR ¥> "A8ES NIVREH 8190 L
' ¥ i ONTNIVYL Q3LE14R0D 2
9 S] R QAN9ISSY 3470 52
§ AR AR 9's} §°9 b9 ELI08 96 N
14 { .., Ll 'NgL D34S SYEIQT0S qdlodas €2
! il) 8'S :.N__: 0l
yp i n £ U] 6'¢sy 1r'e] 9°'sf s'8j01'y . e AN NN N N ALWIDE4S U
[I A 0i'L'N 18084 12
Iy ! or'el 1L N IR N dit 02
| 01'h b bl 01 LNl 1iViS 61
|) o' i Ml LYl L 8l
1] 1 or'e] 'l bl 0T LYl IV EPRA
|9 ¥ bl bl L'y £ 1IN0 QRdR4344 91
S)) Ml 'l 'l T LIND QRYE4RNd ST
I{¢ 4 b bl N_v.; I 1IN0 GR434384 ¥]
|3) .“» .: Ly TR4SNVAL 804 NOSTAY TVIDR4S €1
| S) bl b1 LY T[301a43S oI S¥ERLON ¥SERON 21
111 b) b1 Ll 33304408 LTINVA [1
Iyl ' bl b L'y SO4VIS VID4VNIA Ot
|5 ¥ -:. bl :“_ KQIQTIB) 40 yR4ROM 6
|15) }) bl :._ S0194S TVII4VR 9
I 01’y , ¥l 01l 9sSv¥I) L
S) LI} i h.”_ NOT&THO0 HDIANES 9
! oLy , ! (1NN Q34SI708 3490 §
|8) 0r'el bl i 01'8'L°9 rel TVIETNE 37041R ¥
[N NI Pl L8 L9y e TA 1571 ¢
Iy i o1'y| ¥'L Ml 0T°8'L'9'¥'E'l aRVN IS4 2
m— 1l @—)]] ‘— -mm —
9 2% N O B I R N) el N (T B B pratLieye’ YI4NON (1 1
IR m.zﬁ.& n.m.f.z USQE M| 2vd| Udjuedfbedledfedad 2o ad|l e ad|ad (14 [SaSH Juvyd
- 1+ - g0 ROIEN HI
S | S) 1 J 0 d SHIOIS WiV | JaYRETT VLIVAQ WS
G VD SSURUN S _— -

64

Original
FITELD NAME Data NEW DATA STORES
Store

D4 D4.1|D4.2iD4.3|D4.4

1D_NUMBER
FIRST NAME

LAST NAME

MIDDLE INITIAL

DATE ENLISTED

SERVICE DURATION

CLASS

MARITAL STATUS

NUMBER OF CHILDREN

FINANCIAL STATUS

FAMILY SUPPORTER

NUMBER OF BROTHERS IN SERVICE
SPECIAL REASONS FOR TRANSFER
PREFERED UNIT 1

PREFERED UNIT 2

PREFERED UNIT 3

STREET

CITY

STATE

Z1P

PHONE

SPECIALTY

UNTT

DATE ASSIGNED

COMPLETED TRAINING

DATE WHEN REMAINING SERVICE < 4 MON

+4+ 4+
+++

TR

4+ + 4+

R R R E R E E R E I T S S G s
+E 4+

Figure 7.6 The analysis of Data Store D4

Next, standard names are given to the files
and the data elements. Although this step in the design is
qQuite independent of any particular DBMS, 1t will save time 1if
while nmaming the files and data elements, consideration is
given to the selected DBMS, dBASE 111 Plus, which allows eight
characters for record names and ten characters for field names.
The data stores and the corresponding database files are shown
in fFigure 7.7.

Next the key field for each record must be
determined. Most of the records in the data base contain an
ID_NUMBER field, which 1is an excellent identifier of the

record. In the few records that do not have an ID_NUMBER, the

65

S/NIDATA STORE|FILE NAME
1 D1 ENLISTED
2 D2 TRAIN_RQ
3 D3 COMPL_TR
4 D4.1 SLD_ADDR
S D4.2 SLD_SERV
=) D4.3 SLD_TRAN
7 D4.4 SLD_PREF
8 D5 UNIT_ORG
9 D6 ASSIGNMS

10 D7 CHANGES

11 D8 RETIRED

12 D9 SPECS

13 D10 HISTORY

14 D11 TRSF_PTS

15 D12 UNIT_REQ

16 D13 UNITS

17 D14 TRAINEES

Figure 7.7 Naming the database files

UNIT, SPECIALTY or a combination of these two fields was

selected as a key. Figure 7.8 shows the final structure of
the database. A circled cross denotes that this field is a
key.

Now that the logical structure of the database
has been definmned the memory space that each field and each
record will occupy can be determined. The maximum number of
records that each database file may contain 1is also known.
Therefore, the memory space needed for each file and consequ-
ently for the whole database can be calculated. This calcula-
tion is shown in Figure 7.9.

b. Physical Database Design
The logical database sructure defined during the
previous step will now be transfered into a physical structure.
This neans that the actual database will be created and its
structure stored on a computer storage device, such as a disk,
using the DBMS software package that has been selected, namely

dBASE I!I Plus.

66

Q0 & >2ZuCOwn » O 7]
I T oucr6Zue a6
FIELD NAME| TYPE |WIDTH|h z L S b r & (66 cwo T T oy
- -0 |] e 2 oae Qo -
- <« F Q000 -—0}CPFW®NWWVW -4«
Z K O J o JdJ 4 20T WL -0C2ZZC
Wk O®wWonwwnwuwnD>2aC«0 N IEF DD K
1| ID_NUMBER |CHAR 7 1®
2| F_NAME CHAR 15 |+ ®@®®@ ®@® C?@ @
3L _NAME CHAR 20 |+ + + +
4IM_INITIAL |CHAR 1 |+ + + +
S| DATE_ENL DATE 8 |+ + +
6| SERV_DUR NUMERIC 2 |+ + +
7 | CLASS CHAR 3 |+ + +
8|MARIT_STAT |[CHAR 1 |+ + +
9INUM_CHILD [NUMERIC 1 1+ + +
10} FINAN_STAT |CHAR 1 1+ + +
11 |FAM_SUPP LOGICAL 1 |+ + +
12| BROTH_SERV |NUMERIC 1 |+ + +
13| SPEC_REAS |LOGICAL 1 |+ + +
14|PRF_UNIT1 |CHAR 7 i+ + +
15|PRF_UNIT2 |CHAR 7 |+ + +
16|PRF_UNIT3 ICHAR 7 |+ + +
17| STREET CHAR 15 |+ + + +
18(CITY CHAR 20 [+ + + +
19| STATE CHAR 15 |+ + + +
20| 21IP CHAR S [+ + + +
21 | PHONE CHAR 14 |+ + + +
22|SPECIALTY |CHAR 81 O+ + Ok O+ +® +
23| SPEC_REQ NUMERIC 4
24|{UNIT CHAR 7 + ®+ GO®
25| DATE_ASIGN |DATE 8 + +
26| END_TRAIN |LOGICAL 1 +
27 |DATE _4 DATE 8 +
28| REQUIRED NUMERIC 3 +
29 |EXISTING NUMERIC 3 +
30| COMPLEMENT |NUMERIC 3 +
31| DATE_RET DATE B8 + +
32|0''aLl _PTS NUMERIC 3 +
33 (NeeDS NUMERIC 3 +
Figure 7.8. The final structure of the database.

Creating a database wusing dBASE 11l Plus 1is very
easy and is done by using the CREATE command. The database
file ASSIGNMS is created as an example:

— First bring up dBASE 111 by typing:
C> DBASE
‘ - When the period prompt is received enter the command

CREATE followed by the file name:

. CREATE ASSIGNMS

— dBASE II] Plus will then ask for the field name,

width and if it is

decimal part.

the logical design,

a numeric

Since this information

field,

type and

the width of the

has been defined 1in

it can easily be entered.

RECORD MAXIMUM MAX IMUM
FI1LE NAME SIZE NUMBER FILE SIZE NOTES
(Bytes)| OF RECORDS| (Bytes)

ENLISTED | 153 (a)] 1,500 229,500 |(a) One byte is used
TRAIN_RQG 13 10 130 as a flag by dBASE
COMPL_TR 16 1,100 (b) 17,600 I1I Plus

SLD_ADDR | 113 16,500 (c)|1,864,500](b) 400 soldiers comp-
SLD_SERV 53 16,500 874,500 lete training in
SLLD_TRAN 14 16,500 231,000 1 month

SLD_PREF 29 16,500 478,000 ((c) 1500 % 11 classes
UNIT_ORG 25 300 (d) 7,900 {(d) 10 spec ¥ 30 units
ASSIGNMS 31 1,100 34,100 |(e) no more than 2% of
CHANGES 142 330 (e) 46,860 all soldiers
RETIRED 16 1,500 24,000 |(f) Removed from data-
SPECS Q 10 Q0 base once every
HISTORY 140 9,000 (f){1,260,000 year.

TRSF_PTS 19 1,100 20,900

UNIT_REQ 19 300 5,700

UNITS 8 30 240

TRAINEES 16 10 160

MAXIMUM DATABASE SIZE 5,095,180

Figure 7.9

Memory requirements of the database

The file ASSIGNMS as entered i1in the computer 1is
shown 1n Figure 7.10
Field Name Type Width Dec

1. ID_NUMBER character 7

2. SPECIALTY character 3

3. UNIT character 7

4., DATE_ASIGN date 8
Figure 7.10 File ASSIGNMS

Working in the same way the remaining files in the

database are created.

68

2. Design the Application Programs

The design of the programs that will be used by the
DBMS to process the data in the database is the next step.
According to the method previously described, the DFD of
analysis must be transformed into a structure chart.

The first step is to identify automation boundaries
for the processes in the DFD. For example, consider process
P2.1 which adds new records 1in data store D4 for the new
enlisted soldiers. What other processes could be inside the
same automation boundary with P2.17 Process P2.1 uses as input
data store D1 (New Enlisted Soldiers) which 1is being updated
by process P5.4 (Get Enlisted Soldiers data). Therefore, P5.4
and P2.1 can be included in the same boundary but it must be
assumed that PS5.4 will be executed first. Next the other
processes are considered, and after having examined each one
of them, the grouping of all processes in the DFD into automa-

tion boundaries is produced as shown in Figure 7.11.

TIME PROCESS
lset of each month rP5.1, P3.1, P2.3, P3.3, P2.2.3
2nd of each month P4.1, P4.2, P4.3, P3.2, P2.2.2, P&6.2

3rd of each odd month | P5.4, P2.1
10th of each odd month | P1, P&6.1

Z24th of each month P5.2, P5.5, P2.2.1

Figure 7.11 Automation boundaries

For each one of these boundaries a structure chart is
constructed. O0On the top of each chart a control module is
inserted, which controls the flow of execution among the
processes. Inside the boxes of the structure charts a very

brief imperative statement is provided which explains tihe

69

purpose of the module. The result of this work is shown in

Figures 7.12 through 7.16.

SsS
UNITS
REP
1]
PROCESS Report PROCESS Report
for RETIRED for CHANGES in
soldiers soldier data
PS.1 P3.1 P2.3 P5.3 P2.2.3
GET UPDATE UPDATE GET UPDATE
RETIRED| (UNITS file with| [HISTORY CHANGES| [SOLDIER files
DATA RETIRED soldiers file data | |with CHANGES
Figure 7.12 Structure chart for the processes:
PS5.1, P3.1, P2.3, P5.3 AND P2.2.3
PROCESS
ASSIGNMENTS
P4a.1 P4.3 P2.2.2
CALCULATE ASSIGN UPDATE
POINTS each SOLDIER SOLDIER file
for each to a UNIT with
soldier ASSIGNMENTS
P4.2 P3.2 P&6.2
CALCULATE UPDATE PRINT
units NEEDS UNITS file LIST OF
for each with ASSIGNMENTS
SPECIALTY ASSIGNMENTS

Figure 7.13 Structure chart for processes:
P4.1, P4.2, P4.3, P3.2, P2.2.2 and P6.2
The system’'s structure chart is almost complete. The
acnly thing remaining is to connect all structure charts under
a main control module and number and name the modules in the
chart. Figure D.1 in Appendix D shows the completed structure

chart.

70

PROCESS
NEW ENLISTED
SOLDIERS

|

PS.4 P2.1

GET ADD
ENLISTED SOLDIERS NEW RECORDS TO
DATA SOLDIER FILES

Figure 7.14 Structure chart for processes P5.4 and P2.1

PROCESS
TRAINING
NEEDS
Pl P&6.1
ESTIMATE NEEDS PRINT 1list
for each with
SPECIALTY TRAINING NEEDS

Figure 7.15 Structure Chart for processes Pl and Pé6.1

PROCESS
STC REPORTS

5.5

PROCESS soldiers
who COMPLETED
SPECIALTY TRAINING

PROCESS soldaiers
ENROLLED 1in
SPECIALTY TRAINING

PS.2 P2.2.1

GET -UPDATE SOLDIER
TRAINED soldiers file with new
DATA TRAINED soldiers

Figure 7.16 Stucture chart for processes P5.2, P2.2.1 and P5.5

The next step 1s to prepare a table that contains a

brief description of the function of each module in the stru-

cture chart. This table gives some additional information

and helps 1in clarifying some of the imperative statements 1in

the boxes of the structure chart. The second ingredient of the

71

program design, the VIOC, 1s now complete (see Figure D.Z in
Appendix D).

Finally the IPO charts are prepared, one for each box
in the structure chart. These charts provide detailed informa-
tion on the inputs that each module requires, the process
performed by the module and the outputs produced.

When constructing an IPO chart, most designers prefer
to use Structured English to describe the process performed by
a module. Others prefér to use pseudocode, or logic flowcharts
or a combination of these techniques.

The logic flowchart provides an excellent way for
describing the steps of a process. 1t uses very few, simple
symbols and is easy to follow. Many people, however, consider
flowcharts as a bad choice. The reason is that flowcharts have
been misused for many years. Programmers in the past were
usually required to document their programs wusing flowcharts.
What they really were doing was writing the program first and
then drawing a flowchart that echoed the program code. Another
reason why flowcharts are not very popular 1s that they are
difficult to construct if the program is very complex. For the
DBMS considered in this thesis, the processes of the system
nave been decomposed to the level where each module performs
only one function. Therefore, logic flowcharts are prefered
for the IPDO charts to show the process performed by each
program. The IPO charts for all twenty seven modules of the
system structure chart are shown in Figures D.3.1 through
D.3.27 of Appendix D.

The Structure chart together with the VTOC and the IPO
charts form the design specifications of the applications
programs. This design will be translated into source code

during the Implementation phase.

72

VIII. IMPLEMENTATION

A. THEORY

1. The Purpose of the Implementation Phase

This phase is probably the largest and most difficult
one. It may fail 1if the phases preceding it, especially the
Analysis and Design phases, have not been adequately document-
ed. I1f, however, these two phases have been successfully
completed, the implementation phase will be straightforward.

The purpose of the Implementation phase 1is primarily
to deliver a system ready for execution. The two major tasks
accomplished during this phase are:

— To take the design specifications that resulted from the
Detailed Design phase and translate them into source code.

— To verify that this source code implements correctly the
design specifications.

2. The steps of Implementation

The steps that must be followed during this stage are:
a. Construct a test database
During the design phase the database 1is created
by defining, compiling and storing 1its structure wusing the
DBMS previously selected. This database, however, contains
no real information. The purpose of constructing a test
database 1is twofold: to test the accuracy of the database
definitions and to facilitate the testing of the application
programs.
b. Code the application programs
During this step the detailed design specificati-
ons are transformed into source code. The first consideration

is the order of program development. In other words it must be

73

decided which programs to develop first. There are two appro-
aches wused by the majority of the programmers: the top—-down

and the bottom-up approach.

During top-down program development the programmer
starts with the main application program and works down
through the system structure chart, leaving for last the
programs at the bottom of the chart. To test a finished
program at a higher level, the programmer creates dummy subpro-
grams that simulate the lower level programs called by the
higher level program. These programs are called stubs.

During bottom-up development the programmer starts
with the programs at the lowest level which do not depend on
any other program 1in the system. When all the independent
programs have been developed and tested, the programmer moves
to the programs that call them. Using this approach no dummy
subprograms are necessary.

c. Test the system

To test the coded programs the test database is
used. First each program is tested independently, refered to
as a unit test. Finally the system programs as a whole are
tested which is called integrated test. Both unit and integra-
ted testing are difficult tasks. Each program should be tested
for its handling of abnormal situations and data entry errors,
attempting to use the system as the users will. Typical use
cycles should be exercised to make sure that the programs work
together as they were designed. Next, check the data files to
see 1f the application adds, updates and deletes data properly.
No matter how much time is spent on testing, it cannot be
overdone. Therefore it must be decided when sufficient testing
has been done to ensure that the system is not going to crash

after it is up and running.

d. Document the system

The user’'s opinion of a system is greatly influen-
ced by the quality of the documentation he is given and the
ease with which he can use this documentation. Documentation
helps the user to maintain the system. Users must be able to
read and understand the documentation in order to correct or
modifv an application program. Well documented programs are
easier to maintain but incorrect and/or out of date documen-
tation is worse than none at all.

Well designed and carefully formatted code is the
start of a properly documented system. Document the programs
considering the people who will have to maintain the applica-
tion. Maintenance personnel do not trust documentation that is
not embedded 1in the code or otherwise "on line". Program
documentation starts with the program—header and includes
comment lines and line-by-line comments adjacent to the
program commands and statements.

The program header provides the name of the
program, a description of what it does, the date of the last
update and optionally the significance of each program para-
meter.,

Comment lines are used to describe the function
of a group of statements. Usually a well documented program
.includes a comment line for each box in the program flowchart.
Line-by-line comments document exactly what each line of
program code is doing.

To complete the documentation, in addition to
"on line" documentation:

(1) Document procedures for the user on how to:
. Use the new system

. React in case that the system fails

(2) Document procedures for the operations personnel on
how to:
. Act on a system failure
. Back-up the data base
e. Train users and operations personnel
Although the documentation given to the user and
the operations personne! provides information on how to in-
stall, operate and check out the system, some training of
personnel is required. Training will help them to understand
the documentation, answer the questions, and clarify misunder-
standings.
f. Test the new system in parallel with the old one
If possible, the new system should be run in paral-
lel with the old one. In this way the transition becomes
smoother and a comparison of the results of the two systems

cari be made.

B. IMPLEMENTATION

1. Constructinao a test data base

The data base consists of 17 files which were created
during the Detailed Design phase. The next step 1is to enter
data in these files to facilitate the testing of the applica-
tion programs. Using dBASE III Plus 1s very easy to add
records to a data base file and fill them with information
using the following commands:

- USE <file name>
- APPEND

A single blank record will be displayed on the screen
and the user can fill in the empty fields. After the last
field bhas been entered the user enters a <Pg Dn> and a new

blank r«cord is displayed. When finished the user presses

76

<Esc> to terminate the addition process. All data base files
do not require initial loading. Some of these files are loaded
by the system. For example, test data is not required for the
ASSIGNMS file or the RETIRED file. This 1is done by the
ASSIGNMT and GET-RET programs, respectively. The files in
which test data is entered will be:

SLD-ADDR, SLD-SERV, SLD-TRAN, SLD-PREF, UNIT-0RG, SPECS,
HISTORY and UNITS. Manual lists must also be prepared for NEW
ENLISTED soldiers, soldiers who COMPLETED SPECIALTY TRAINING,
CHANGES in soldiers status and soldiers currently in TRAINING.

2. Translating the design into dBASE III Plus code

The IPO charts and the logic flowcharts of the
Detailed Design contain enough information to fully capture
the program logic. Therefore the effort to translate each step
in the flowcharts into one or more dBASE Il]l commands 1s a
straightforward process.

As mentioned before there are two different approaches
to program development: bottom—up and top-down. It is the
author’'s opinion that the bottom-up approach 1is easier to
follow since the program can be tested immediately after
writing 1it, instead of having to create ‘"stubs” as in the
top-down approach.

The listings for the programs PERS-MGT, ENL-5LDS,
GET-ENL and ADD-SLD are shown 1in Appendix E (Sections E.1
through E.4).

3. Testing, debugging and documenting the system

Using the test data base constructed, the application
pragrams are tested and debugged individually. Fimally the

system as a whole i1s tested.

77

The listing of program

pendix E) provides an example of

programmer can use his own skills

documentation.

78

PERS-MGT (Section E.1 in Ap-
"on-line" do~umentation. Each

to create good and readable

IX. CONCLUSION

The steady decline in computer hardware costs not only
makes it possible to add more applications on computers but
it also distributes computing power to more and more new
users. As a result the demand for software, that tells the
computer exactly what steps to perform to convert its raw
power into useful operations, is increasing steadily.

Therefore, improved techniques in software development
become the key issue if further expansion of the use of
computers 1is to be achieved. Software engineering is rapidly
emerging as a discipline for managing the development of -
software systems, but like every new engineering discipline
has not yet achieved widespread acceptance.

Due to the existing shortage in software engineers, a
large number of people are building software systems who have
limited or no knowledge of the software engineering principles
In fact most of them have obtained only a technical knowledge
of one or two programming languages and one or two computer
systems.

This thesis 1is 1i1ntended especially for these peaple.
Fundamental! software engineering concepts were first discussed
and then applied to a real software product which was featured
throughout this thesis.

Al though panacean tonols and techniques for the software
engineer do not exist, the value of software engineering
principles remains great. Until an adequate number of software
engineers using these principles has been developed, the
"software crisis" will continue to be the major restraint on

the progress of computer technology.

79

O—

RETIBEL

ORITS OF
ASSIGNRL
SOLDIEES

APPENDIX A

SN

ORITS OF

RETIRED
SOLDIBRS

D8 SOLDIERS
(manual list)

-
SOLDIERS WHC

D3 CONPLETED
SPEC TRAINING
{manual list,

P

CEARGES
DT OF STATOS

—d

ENTEE

(manual list)

[ngw ENLISTEL

D1 SOLDIERS
(wanual list)

CORRENTLY
D14 TRAINING SOLDIERS

DATA
) Y

y

e |

|D13 URI? BAMES ~———

D5 ONITS

B

D12 ONIT NEEDS
o s | (o @it
——ind -
SOLDIERS so{g%r TIOR POINTS ‘L
M
FILE /Le{D10 BISTORT
0CISE
: ASSIGK-
o MENTS
——— | (P22 |
SOLDIERS WEO UPDATE
D3 CONPLETED —*{RECORDS IN D 4SSIGK-
SPEC THAINING | SOLDIERS HEKTS

(sanual liet)

Figure A.1

The System Data Flow Diagram

? PILE

o

D4 SOLDIERS

CBAKCES P2.1
D7 OF T | ADD RE
STAT0S —>1BECORDS 10
i
T
KEN
DI ENLISTRD \\\“"’//
| SOLDiRgS
CURRENTLY

D14 TRAINING

SOLDIERS

80

GENEBATE
™ " REPORYS

ASSIGNK-

D9 SPECIALTIES

tRAINTN
REK])

REQDIRED ROMBER

| D2 OF SOLDIERS FOR

RACE SPECIALTY

NEW
D1{ENLISTED —
SOLDIERS
D4 | SOLDIERS — Pl
. e ESTIMATE
NUMBER OF REQUIRED NUMBER
DSIUNITS —— SOLDIERS | D2|0F SOLDIERS FOR
FOR EACH EACH SPECIALTY
. SPECIALTY
D9 SPECIALTIES —
CURRENTLY
D14 | TRAINING
SOLDIERS
Figure A.2 Process P1
([Pz.1)
ADD new
NEW records to
D1 |ENLISTED SOLDIERS
SOLDIERS file
([P2.2.1 \
UPDATE
SOLDIERS WHO SOLDIERS
i D3 |COMPLETED file with
SPEC TRAINING TRAINED
\SOLDIERS)
P2.2.2
UPDATE
D6 |ASSIGNMENTS + SOLDIERS ™ D4 | SOLDIERS
file with
\ASSIGNMENTg/
P2.2.3 ‘
CHANGES UPDATE
D7 OF SOLDIERS
STATUS lfile with
CHANGES
{ P2.3)
UPDATE
RETIRED HISTORY and
D8 SOLDIERS D10O|{HISTORY
SOLDIERS files with
. RETIRED
SOLDIERS

Figure A.3 Process P2

81

D8

RETIRED

P3.1
UPDATE
UNITS file

SOLDIERS

Dé

with
RETIRED

\ SOLDIERS)
4 P3.2 —*\

UPDATE
UNITS file

D5| UNITS

ASSIGNMENTS

Figure A.4

D4

Process P3

AssiaRHENTS
N\)

CALCULATE
TRANSFER

SOLDIERS

POINTS
FOR EACH
SOLDIER

D11

SOLDIER
QUALIFICATION

POINTS

D3

P4.3
ASSIGN

SOLDIERS WHO
COMFLETELD

e EACH

SPEC TRAINING

——

—»{ SOLDIEF D6 |ASSIGNMENT

TO A UNIT
N

D12

UNIT NEEDS

P4.2__)

D5

UNITS

D9

SPECIALTIES _"__i

D13

UNIT_NAMES

Figure A.5 Frocess

CALCULATE

| UNITS NEEDS

FOR EACH

r.\\E}’ECIALTY

RETIKELD
D8 |SOLDIERS
(manual 11i

st)

D8

RETIRED
SOLDIERS

P5.2
SOLDIERS WHO SOLDIERS WHO
D3 |COMFLETED » GET b o D3| COMPLETED
SPEC TRAINING RETIRED SPEC TRAINING
(manual list) SOLDIERS
DATA
P5.3
CHANGES GET CHANGES
D7|0F STATUS CHANGES D7|OF
(manual list) DATA STATU:
P5.4
NEW ENLISTED GET NEW
D1|SOLDIEERS ENLISTED————%} D1|ENLISTED
(manual list; SOLDIERS SOLDIERS
DATA
P5.5
CUREENTLY GET CURRENTLY
D14 |TRAININS SOLDIERS——TRAINING————® D14 |TKAININ::
(marnual list) SOLDIERS SOLDIEEYS
Figure A.6 Frocess F§

REQUIRED NUMEEF
D2 |(OF SOLDIERS FOE
EACH SPECIALTY

D6 |ASSIGNMENT

S

(P6.1

PRIN, LIST
with '
TRAINING

NEEDS

P62

PRINT
LIST OF

Figure A.7

Frocess

P6

ASSIGN-
MENTS

83

APPENDIX B

THE DATA DICTIONARY

Section B.1. The Data Stores

D1

D2

D3

NEW ENLISTED SOLDIERS

1. ID_NUMBER
2. SOLDIER NAME

3. DATE ENLISTED

4, SERVICE DURATION

S. CLASS

6. MARITAL STATUS

7. NUMBER OF CHILDREN

8. FINANCIAL STATUS

9. FAMILY SUPPORTER

10. NUMBER OF BROTHERS IN SERVICE
11. SPECIALREASONS FOR TRANSFER
12. PREFERED UNITS

13. ADDRESS

14. TOTAL NUMBER OF ENLISTED

REQUIRED NUMBER OF SOLDIERS FOR EACH SPECIALTY

1. SPECIALTY
2. REQUIRED SOLDIERS FOR SPECIALTY TRAINING

SOLDIERS WHO COMPLETED SPECIALTY TRAINING

1. ID_NUMBER
2. SOLDIER NAME
3. SPECIALTY

84

D4 : SOLDIERS
1. ID_NUMBER
2. SOLDIER NAME
3. DATE ENLISTED
4. SERVICE DURATION
S. CLASS
6. MARITAL STATUS
7. NUMBER OF CHILDREN
8. FINANCIAL STATUS
9. FAMILY SUPPORTER
10. NUMBER OF BROTHERS IN SERVICE
11. SPECIAL REASONS FOR TRANSFER
12. PREFERED UNITS
13. ADDRESS
14. SPECIALTY
15. ASSIGNED UNIT
16. DATE ASSIGNED
17. COMPLETED TRAINING
18. DATE WHEN REMAINING SERVICE EQUALS 4 MONTHS

DS : UNITS
1. SPECIALTY
2. UNIT. NAME
3 REQUIRED NUMBER OF SOLDIERS
4. EXISTING NUMBER OF SOLDIERS
5. COMPLEMENT NUMBER OF SOLDIERS

D& : ASSIGNMENTS

1. ID_NUMBER
2. SOLDIER NAME
3. SPECIALTY

85

D7

0]2

D

D10O:

5,

5

UNIT ASSIGNED TO
DATE OF REPORT

CHANGES OF STATUS

1
2
3

4.

S
)
7
8.
)
1
1

0.

ll

1D_NUMBER

CHANGED NAME

CHANGED SERVICE DURATION

CHANGED MARITAL STATUS

CHANGED NUMBER OF CHILDREN

CHANGED FINANCIAL STATUS

CHANGED FAMILY SUPPORTER

CHANGED NUMBER OF BROTHERS IN SERVICE
CHANGED SPECIAL REASONS FOR TRANSFER |
CHANGED PREFERED UNITS

CHANGED ADDRESS

RETIRED SOLDIERS

B W N -

1D_NUMBER
SOLDIER NAME
SPECIALTY
UNIT

DATE RETIRED

SPECIALTIES

1.

SPECIALTY

HISTORY

1.

‘b W N

ID_NUMBER
SOLDIER NAME
DATE ENLISTED
CLASS

ADDRESS

86

&. SPECIALTY

7. DATE RETIRED

D11

SOLDIER QUALIFICATION POINTS

1. ID_NUMBER
2. SPECIALTY

3. QUALIFICATION POINTS

D12

UNIT NEEDS

1. SPECIALTY

2. UNIT NAME

3. NEEDS

D13

UNIT NAMES

1. UNIT NAME

D14

CURRENTLY TRAINING SOLDIERS

1, ID_NUMBER

2. SPECIALTY

Section B.2.

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

The Data Elements

ID_NUMBER

A number given to a soldier during enlistment,
that uniquely identifies him.

Numeric, PIC 9(7)
b, b3, D4, D&, D7, DB, D10, D11, D14

SOLDIER NAME
CHANGED NAME

The name of a soldier in the form:
First, Last, Middle Initial.

87

Format:

Location:

Name:
Aliases:
Description:
Format:

L.ocation:

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:

Aliases:

Description:
Format:

Location:

Name :

Aliases:

Character, PIC X(36)
D1, D3, D4, D46, DB, D1O

DATE ENLISTED

The date of the soldier enlistment
Date, PIC X(8B)
D1, D4, D10

SERVICE DURATION

CHANGED SERVICE DURATION

The duration of the soldier service
Numeric, PIC 9(2)

D1, D4

CLASS

time in months

All soldiers enlisted 1n the same period belong in

the same Class

Alphanumeric, PIC X(3) (two digits followed by a

letter. eg. 87B, B7E, B88A)
D1, D4, D10

MARITAL STATUS
CHANGED MARITAL STATUS

The marital status of the soldier.
single, divorced, etc)

Character PIC X(7)
D1, D4

NUMBER OF CHILDREN
CHANGED NUMBER OF CHILDREN

88

(eg. married,

Description:
Format:

Location:

Name:
Aliases:
Description:

Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Alliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

The number of the soldier ' s children
Numeric, PIC 9(1)
Di, D4

FINANCIAL STATUS
CHANGED FINANCIAL STATUS
The soldier fimancial status

Character, PIC X(1)
(G = Good, M = Medium, B = Bad)

D1, D4

FAMILY SUPPORTER
CHANGED FAMILY SUPPORTER

A soldier is considered family supporter 1f his
father has died and he is the oldest son.

Character, PIC X(3) (YES, NO)
D1, D4

NUMBER OF BROTHERS IN SERVICE
CHANGED NUMBER OF BROTHERS IN SERVICE

The number of a soldier’'s brothers serving the
Armed Forces.

Numeric, PIC <9(1)

D1, D4

SPECIAL REASONS FOR TRANSFER

CHANGED SPECIAL REASONS FOR TRANSFER

A logical field that becomes true if the soldier
has special reasons to be transfered to a specific
unit.

Logical, T or F

b1, D4

89

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:
Description:

Format:

Location:

Name:
Aliases:
Description:
Format:

Location:

Name:
fliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

PREFERED UNITS
CHANGED PREFERED UNITS

The names of three units the soldier prefers to be
transfered to, in order of preference.

Character, PIC X(21)
Dlo Dq

ADDRESS
CHANGED ADDRESS

The soldier civilian address

Character, PIC X(69)
Street, PIC X(15)
City, PIC X(20)
State, PIC X(195)
Z21P, PIC X(5)
Phone, PIC X(14)

bi, D4, D10

TOTAL NUMBER OF ENLISTED

The total number of new enlisted soldiers

Numeric, PIC 9(4)

D1

SPECIALTY

The name of the soldier’'s specialty

Character, PIC X(8B)

p2, b3, D4, DS, D&, D8, D9, D10, Dil, D12, D1

REQUIRED SOLDIERS FOR SPECIALTY TRAINING

The number of new enlisted soldiers who must be
trained in each specialty to cover the units needs.

950

Format:

Location:

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:
Description:
Format:

lLocation:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:

Aliases:

Numeric, PIC 9(4)
D2

ASSIGNED UNIT

UNIT, UNIT NAME, UNIT ASSIGNED TO

The name of the unit a soldier is assigned to
Character, PIC X(7)

D4

DATE ASSIGNED

DATE OF REPORT

The date when a soldier is assigned to a unit.
Date, PIC X(8)

D8

COMPLETED TRAINING

A logical field that becomes true when a soldier
completes his specialty training.

Logical, T or F
D4

DATE WHEN REM. SERVICE = 4 MONTHS

The date when the remaining service time of the
soldier becomes equal to 4 months. This date is
used in calculating the training needs.

DATE, PIC X(8B)

D4

UNIT NAME
ASSIGNED UNIT, UNIT ASSIGNED 7O, UNIT

91

Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:
Description:
Format:

Location:

The name of a unit.
Character, PIC X(7)
DS, D12, D13

REQUIRED NUMBER OF SOLDIERS

The number of soldiers of a specific specialty
required to meet a unit’'s needs.

Numeric, PIC 9(3)
DS

EXISTING NUMBER OF SOLDIERS

The number of soldiers of a specific specialty
in a unit.

Numeric, PIC 9(3)
DS

COMPLEMENT NUMBER OF SOLDIERS

The difference between the required and existing
number of soldiers 1in a unit,

Numeric, PIC 9(3)
D5

UNIT ASSIGNED TO

UNIT, ASSIGNED UNIT, UNIT NAME

The unit to which a soldier is assigned.
Character, PIC X(7)

D&

92

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:
Description:
Faormat:

Location:

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:
Description:
Format:

Location:

DATE OF REPORT

DATE ASSIGNED

The date when a soldier is assigned to a unit.
Date, PIC X(B)

D6

CHANGED NAME
SOLDIER NAME

The changed name of a soldier in the form:
Last, First, Middle Initial.

Character, PIC X(3&)
D7

CHANGED SERVICE DURATION

SERVICE DURATION

New service time for a soldier in months,
Numeric, PIC 9(2)

D7

CHANGED MARITAL STATUS

MARITAL STATUS

The new marital status of a soldier.
Character, PIC X(7)

D7

CHANGED NUMBER OF CHILDREN

NUMBER OF CHILDREN

The new number of children of a soldier.
Nummeric, PIC 9(1)

D7

93

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:

Description:

Farmat:

Location:

Name:
Aliases:

Description:

Faormat:

Location:

Name:
Aliases:

Description:

Format:

Location:

CHANGED FINANCIAL STATUS

FINANCIAL STATUS

The new financial status of a soldier.
Character, PIC X (1)

D7

CHANGED FAMILY SUPPORTER
FAMILY SUPPORTER

The new status of the soldier relatively to
being a family supporter or not.

Character, PIC X(3)
D7

CHANGED NUMBER OF BROTHERS IN SERVICE
NUMBER OF BROTHERS IN SERVICE

The new number of the soldier ' s brothers
serving the Armed Forces.

Numeric, PIC 9(1)
D7

CHANGED SPECIAL REASONS FOR TRANSFER
SPECIAL REASONS FOR TRANSFER

This field is updated whenever the special
reasons for transfer change.

Logical, T or F
D7

CHANGED PREFERED UNITS
PREFERED UNITS

The names of three units the soldier wants to be
transfered to, in order of preference.

Character, PIC X(21)
D7

94

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

Name:
Aliases:
Description:
Farmat:

Location:

Name:
Aliases:
Description:
Format:

Location:

Name:
Aliases:

Description:

Format:

Location:

CHANGED ADDRESS

ADDRESS

The new address of a soldier.
see ADDRESS

D7

QUALIFICATION POINTS

A number calculated during the assignments process.
The higher this number, the more probable for a
soldier to be transfered to the unit he prefers.
Numeric, PIC 9(3)

D11

UNIT

ASSIGNED UNIT, UNIT NAME, UNIT ASSIGNED 7O
The unit name of a retired socldier.
Character, PIC X(7)

D8

DATE RETIRED

The date when the soldier retired from service.
Date, PIC X(8)
D8, D10O

NEEDS

The number of soldiers of a specialty that a unit
requires to acomplish its mission.

Numeric, PIC 9(3)
D12

APPENDIX C

PROCESS DESCRIPTIONS

Section C.1 : Algorithm Description of Process Pl

INPUT : D1, D4, D5, D9, D14
QUTPUT : D2
PROCESS

Get TOTAL_ENL (total number of new enlisted soldiers)
from D1.

Get CURRENT DATE.

Calculate TOTAL_REQ (total number of required soldiers for
all spesialties) as follows:

TOTAL_REG = TOTAL_COMPL + TOTAL_RET + TOTAL_TR where:
TOTAL_COMPL = The sum of all COMPLEMENT fields in DS
TOTAL_RET = The number of records in D4 with DATE

WHEN REMAINING SERVICE EQUALS 4 MONTHS
earlier than CURRENT DATE.
TOTAL_TR = The number of records in D14.
For each Specialty i in D9 do the following:

Calculate COMi (the number of soldiers needed to sa-
tisfy the needs of all units for this specialty) by
adding all COMPLEMENT fields for Specialty 1 in D3.

Calculate TRi1 (number of soldiers currently training
in Specialty i) by counting the records in D14 with

SPECIALTY = i)

96

Calculate RETi (number of soldiers to retire within
the next 4 months) by counting the records 1in D4
with DATE WHEN REMAINING SERVICE EQUALS 4 MONTHS
earlier than CURRENT DATE and SPECIALTY =i.

Calculate REQi1 (total number of soldiers required to
fully satisfy the needs for Specialty i) as follows:
REQiL1 = COMi + RETi - TRi

Calculate Xi (number of new enlisted soldiers to be
trained in Specialty 1) as follows:

Xi = REQi x TOTAL_ENL / TOTAL_REQ

Append a record to data store D2.

Store i1 and Xi 1in D2.

Section C.2 : Algorithm Description of Process P2.1
INPUT : D1

QUTPUT : D4

PROCESS :

For each record in D1 do the following:

Create a new record in D4.

Read all the fields from the record 1in D1 1nto the
respective fields of the record in D4.

Initialize the rest of the fields of the record in D4:
COMPLETED TRAINING = False
SPECIALTY = "2Z...2"
ASSIGNED UNIT = "ZZ,..2"
DATE ASSIGNED = 01/01/01
DATE WHEN REMAINING SERVICE EQUALS 4 MONTHS =
(DATE ENLISTED) + (DURATION OF SERVICE) - (4 Months)

97

Section C.3 : Algorithm Description of Process P2.2.1

INPUT : D3
CUTPRUT : D4
PROCESS :

For each record in D3 do the following:
Read the ID_NUMBER and SPECIALTY.
Find the record of the soldier in D4 wusing ID_NUMBER
as a key.
Update the SPECIALTY field.
Write “True” into the COMPLETED TRAINING field.

Section C.4 : Algorithm Description of Process P2.2.2

INPUT s D&
QUTPUT : D4
PROCESS :

For each record in vé do the following:
Read the ID_NUMBER, UNIT ASSIGNED TO and DATE OF
REPORT.
Fird the record in D4 with the same ID_NUMBER.
Update the ASSIGNED UNIT and ASSIGNED fields in this

record.

Section C.S5 : Algorithm Description of Process P2.2.3

INPUT : D7
QUTPUT ¢ D4
PROCESS

For each record in D7 do the following:
Read the ID_NUMBER and the rest fields.

Find the record in D4 with the same ID_“UMBER.

98

I¥ CHANGED SERVICE DURATION <> 99 then
(DATE WHEN REMAINING SERVICE EQGQUALS 4 MONTHS) =
(DATE ENLISTED) + (CHANGED DURATION OF SERVICE) -
(4 MONTHS) .
If CHANGED NAME <> "ZZ2...Z2" then
update SOLDIER NAME in D4.
[f CHANGED MARITAL STATUS <> "ZZ...Z1" then
update MARITAL STATUS in D4.
If CHANGED FINANCIAL STATUS <> "2Z...Z1" then
update FINANCIAL STATUS in D4.
If CHANGED FAMILY SUPPORTER <> False then
update FAMILY SUPPORTER in D4.
If CHANGED NUMBER OF CHILDREN <> 9 then
update NUMBER OF CHILDREN in D4.
I f CHANGED SPECIAL REASONS FOR TANSFER <> False then
update SPECIAL REASONS FOR TRANSFER in D4.
If CHANGED PREFERED UNIT 1 <> "ZZ...7" then
update PREFERED UNIT 1 in D4,
If CHANGED PREFERED UNIT 2 <> "2Z...71" then
update PREFERED UNIT 2 in D4.
It CHANGED PREFERED UNIT 3 <> *"ZZ...Z" then
update PREFERED UNIT 3 in DA4.
If CHANGED STREET <> "ZZ...Z2" then
update STREET in D4.
If CHANGED CITY <> "2Z...Z2" then
update CITY in D4.
If CHANGED STATE <> "2Z...I1" then
update STATE in D4,
If CHANGED ZIP <> "ZZ...Z" then
update ZIP 1n D4.

99

Section

INPUT
QUTPUT
PROCESS

For

Section

INPUT
QuUTRPUT
PROCESS

For

If CHANGED PHONE <> "ZZ...2" then

update PHONE in D4.

C.6

D4
D4

each
Read
Find
Crea
Tran

fi

Wrait

Dele

C.7

D8
: DS

each
Read
Find

as

: Algorithm Description of Process P2.3 .

, DB
, D10

record in DB do the following:
the 1D _NUMBER and the DATE RETIRED.
the record in D4 with the same ID_NUMBER.
te a new record 1in D10,
sfer the following fields i1into the respective
elds 1n D10:
ID_NUMBER
SOLDIER NAME
DATE ENLISTED
CLASS
ADDRESS
SPECIALTY
e DATE RETIRED into the respective field 1in D10.

te the record from DA4.

: Algorithm Description of Process P3.1

record 1n DB do the following:

the UNIT and SPECIALTY
the unit record in DS, wusing UNIT and SPECIALTY

a key.

100

Section

INPUT

oguTPUuT

PROCESS

For

Section

INPUT
QUTPUT
PROCESS

For

Decrement by 1 the EXISTING field.

Increment by 1 the COMPLEMENT field.

C.8 : Algorithm Description of Process P3.2

D6
D5

each record 1in D6 do the following:

Read the UNIT ASSIGNED TO and SPECIALTY.

Find the record 1in D5, wusing UNIT ASSIGNED TO
SPECIALTY as a key.

Increment by 1 the EXISTING field.

Decrement by 1 the COMPLEMENT field.

C.? : Algorithm Description of Process P4.1

b3, D4
Di1

each record 1in D3 do the following:
Initialize variable POINTS = O
Read the ID_NUMER and SPECIALTY.
Find the record 1in D4 with the same ID_NUMBER.
If MARITAL STATUS = "MARRIED" then
add 40 to POINTS.
If NUMBER OF CHILDREN > 1 then
add 70 to POINTS.

If NUMBER OF CHILDREN 1 then

adc 35S to POINTS.
I1f FAMILY SUPPORTER = True then

add 40 to POINTS.

101

If FINANCIAL ABILITY "BAD" then

add 20 to POINTS.

I+ FINANCIAL ABILITY "MEDIUM" then
add 10 to PPINTS.

If NUMBER OF BROTHERS IN SERVICE > 1 then
add 20 to POINTS.

If NUMBER OF BROTHERS IN SERVICE 1 then

add 10 to POINTS.
If SPECIAL REASONS FOR TRANSFER = True then
add 10 to POINTS.
Add a new record to D11.
Write the ID_NUMER, POINTS and SPECIALTY into the

respective fields in D11.

Section C.10 : Algorithm Description of Process P4.2
INPUT : b3, DS, D9, D13

QUTPUT : D12

PROCESS

For each record in D9 do the following:

Read the SPECIALTY name.

Calculate TOTAL_ASSIGN (number of soldiers to be as-
signed for this specialty), by counting the records
in D3 with the same SPECIALTY name.

Calculate TOTAL_REQ (number of soldiers of this spe-
Cialty required for all units), by summing up the
COMPLEMENT fields for this specialty in D5S.

For each record in D13 do the following:
Read the UNIT NAME.
Find the record in DS, wusing SPECIALTY and UNIT NAME

as a key.

102

Read the COMPLEMENT field in this recaord.
Calculate:

NEEDS = (TOTAL_ASSIGN / TOTAL_REQ) x COMPLEMENT
Create a record in D12.
Write the UNIT NAME, SPECIALTY and NEEDS into the

respective fields.

Section C.11 : Algorithm Description of Process P4.3

INPUT : D3, D4, D11, D12

QuUTPLT D&

PROCESS

Get CURRENT DATE.
DATE OF REPORT = CURRENT DATE + 7 DAYS.
Sort D11 by SPECIALTY and GQUALIFICATION POINTS.
For each record in D11 do the following:
Read the ID_NUMBER and SPECIALTY.
Find the record in D4 with the same ID_NUMBER.
Read the PREFERED UNIT 1, PREFERED UNIT 2 and PREFERED
UNIT 3.
Find the record in D12 using PREFERED UNIT 1 and
SPECIALTY as a key.
If NEEDS > O then
assign the soldier to prefered unit 1 as follows:
- Subtract 1 from the NEEDS field in D12.
- Write the ID_NUMBER, SPECIALTY and PREFERED UNIT 1
in a new record in Dé.
Else find the record in D12 using PREFERED UNIT 2 and
SPECIALTY as a key.

103

If{f NEEDS > O then
assign the soldier to prefered unit 2 as above.
Else find the record in D12 using PREFERED UNIT 3
and SPECIALTY as a key.
1f NEEDS > O then
assign the soldier to prefered unit 3 as above.
Else assign the soldier to the first unit in D12

in which the NEEDS for this SPECIALTY is > 0.

Section C.12 : Algorithm Description of Process P5.1

INPUT : Manual list of Retired soldiers
CUTPRUT D8

PROCESS

Delete all previous records from DB.
For each record in the manual list do the following:
Append a record to D8.
Read the ID_NUMBER, SOLDIER NAME, SPECIALTY, UNIT and
DATE RETIRED fields into the respective fields in DB.

Section C.13 : Alqgorithm Description of Process P5.2

INPUT : Manual list of Soldiers who completed spec. training
OQUTPUT ¢ D3
PROCESS :

Delete all previous records from D3.

For each record in the manual list do the following:
Append a record to D3.
Read the ID_NUMBER, SOLDIER NAME and SPECIALTY fields

into the regpective fields in D3.

104

Section C.14 : Algorithm Description of Process P5.3

INPUT : Manual list of changes 1n soldier status
QUTPUT ¢ D7
PROCESS :

Delete all previous records from D7.

For each record in the manual list do the following:
Append a record to D7.
Read all fields of the manual list record into the

respective fields of the record in D7.

Section C.15 : Algorithm Description of Process P5.4

INPUT : Manual list of new enlisted soldiers
QUTPUT ¢ D1
PROCESS :

Delete all previous records from D1i.

For each record in the manual list do the following:
Append a record to Dl.
Read all fields in the manual list record into the

respective fields of the record in D1.

Section C.16 : Algorithm Description of Process P5.5

INPUT : Manual list of soldiers enrolled in special training
OUTPUT : D14
PROCESS :

Delete all previous records from D14.

For each recard in the manual list do the following:
Append a record to Di4.
Read the ID_NUMBER and SPECIALTY fields from the list

into the respective fields of the record in D14.

105

Section €C.17 : Algorithm Description of Process P&6.1

INPUT D2

QUTPUT : Printed list of TRAINING NEEDS

PROCESS

Prepare the system printer to print.

Print the list according to a desired format.

Section C.18 : Algorithm Description of Process P&6.2

INPUT : D6

DUTPUT : Printed list of ASSIGNMENTS

PROCESS
Prepare the system printer to print.

Print the list according to a desired format.

106

APPENDTIX D

107

1000

_PERS MG
PERSONNEL
| NANAGENEN?
| I
_1o 1200 1300 | 1400 __ 1500
CORIT RRP _ASSIGMT_ TENL SLDS TRALNING [STC_RIPS
PROCESS PROCESS | PROCESS new PROCESS | I PROCESS
I ‘Asswumrs‘ }IILISTED i TRAINING | 0
| REPORTS ———— | SOLDIRRS ! O REPORTS
|
| 1110 1 1210 241 - Pl
. CRET P “CALC Pt _l m_lm COKP Y21
| pocss ! cucumx L_.' el ESTINATE PROCESS sldrs
.| RETIRDD = IRANSERR | L RMLISTED — NERDS who CONPLETED
' SOLDIERS | POINS for | | | SOLDIERS for each ' | SPECIALTY
 REPORT | each goldier’] DATA SPECIALTY « TRAINING
B i e SEE— |
L1 P51 120 Mg 1320 P21 | 20 PE1 1511 P5.2
o EITHT - CLC A | [APD_SUD (PR YRRIN___ GIT TEE) |
| Gt i TCMGUATE ADD new PRINY LIST GRT TRAINED -
.| BETIRED . OKIY NERDS/ RECORDS to | — with TRAINING SOLDIERS
SRR 1! | | SPRCIALTY SOLDIER files! NEEDS | DATA :
12 P31 o 1230 P43 : 1512 P3.2.1
l I TISGESID : SLDTRD
| OPDATE ONIYS| ASSIGH 5 OPDATE
} 1 ' file with | — each SOLDIER | SOLDIER file
Doy e it ONT ; with new TRAINED
isobigs 0 | SOLDIERS
| 1240 P32 |
L 18P " UPDONASK L1520 P55
o uruxsr . DPDATE ! 111
. UPDiTE T um file PROCESS
| - FIST0T L with i SOLDIRRS
: File B issTchnENTs — ENROLLED in :
| e | SPCIALTY
V. N 1050 P2.2.2 TRAINING
| [P . GPSLDASH —_—
| | PROCESS | '~ UPDATE
— REPORT for | —{ SOLDIER
CHANGES in | | file with
soldier data. } |_ASSIGRMENTS
s | e g
TG _CH | TPRSTON)
6 . PRIN
l CRANGES | .usr of
DN | | ASSIGRYENTS
1120 P2.2.3
PSLOCH
OPDATE |

SOLDIER me(
with CHANGES'

Figure D.1

108

The System Structure Chart

PROGRAM LEVEL
0 1 2 3

DESCRIPTION

1000 Main control program of the PERSONNEL MANA-
GEMENT SYSTEM. It displays a menu screen and
depending on the user’s choice it gives con-
trol to one of five functions.

1100 - Enters the unite reporte into the system
and performs the necessary updates to the
system files.

1110 - Enters the unite report for RETIRED SOL-
DIERS to the system and updates the UNIT_]
ORG, HISTORY, SLD_ADDR and SLD_SERV file.

1111 - Creates the RETIRED file and updates
it with the data from the unit report.

1112 - Reads each record in the RETIRED file
and updates the UNIT_ORG file.

1113 - Reads each record in the RETIRED file,

updates the HISTORY file and deletes
the soldier record from the SLD_ADDR
and SLD_SERV files.

1120 - Enters the units reports for CHANGES in
. SOLDIER DATA to the system and updates
the SLD_ADDR, SLD_SERV, SLD_TRANSF and
SLD_PREF files.

1121 - Creates the CHANGES file and updates
it with the data from the unit report.
1122 - Reads each record in the CHANGES file

and updates the SLD_ADDR, SLD_SERYV,
SLD_TRANSF and SLD_PREF files.

1200 - Calls other modules which assign soldiers
to units, update the units and soldier
files and print the list of assignments.

1210 - Calculates transfer qualification points
for each soldier and updates the TRSF_PTS
file.

1220 - Calculates the unites needs for soldiers

of each specialty and updates the
UNIT_REQ file.

1230 - Considers the soldier transfer points,
his preferences and the unit needs and
assigns each soldier to a unit. This de-
cision is entered into the ASSIGNMS file.

Figure D.2 The Visual Table of Contents (VTOQOC)
of the Personnel Management System (Contin.)

109

PROGRAM LEVEL

0

1

2

DESCRIPTION

1300

1400

1500

1240

1250

1260

131¢

1320

1410

1420

1510

1520

1511

1512

- Reads each record in the ASSIGNMS file
and updates the UNIT_ORG file.

- Reads each record in the ASSIGNMS file
and updates the SLD_SERV file.

- Prints the list of ASSIGNMENTS.

- Enters the EC report for new ENLISTED

SOLDIERS into the system and updates the
ENLISTED, SLD_ADDR, SLD_SERV, SLD_TRANSF
and SLD_PREF files.

-~ Creates the ENLISTED file and updates
it with the data from the EC report.

- Reads each record in the ENLISTED file
and updates the SLD_ADDR, SLD_SERV,
SLD_TRANSF and SLD_PREF files.

Calculates the training needs for each
specialty and prints a list of the needs.

- Calculates the training needs for each
specialty andstores them in the
TRAIN_REQ file.

- Prints the list with the training needs
for each specialty.

Enters the STC reports into the system and
updates the necessary files.

- Enters the STC report for SOLDIERS WHO
COMPLETED SPECIALTY TRAINING into the
system and updates the COMPL_TR and
SLD_SERV files.

- Creates the COMPL_TR file and updates
it with the data from the STC report.

- Reads each record in the COMPL_TR file
and updates the SLD_SERV file.

- Creates the TRAINEES file and updates it
with the data from the STC report for
the soldiers currently enrolled in
gpecial training.

(contin.)

Figure D.2 The Visual Table of Contente (VTOC)

of the Personnel Management System

110

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : PERS_MGT

MODULE No : 1000
DESIGNER : Labros Karatasios DATE : 4,/30/1987
INVOKED BY MODULE : INVOKES MODULES :
1100, 1200, 1300, 1400,
1500
INPUTS : OUTPUTS
ENLISTED, TRAIN_RQ, ENLISTED, TRAIN_RQ,
COMPL_TR, SLD_ADDR, COMPL_TR., SLD_ADDF,
SLD_SERV, SLD_TRAN, SLD_SERV, SLD_TRAN
SLD_PREF, UNIT_ORG, SLD_PREF, UNIT_ORG,
ASSIGNMS, CHANGES. ASSIGNMS, RETIRED,
RETIRED, SPECS, HISTORY, TRSF_PTS,
TRAINEES, TRSF_PTS, UNIT_REQ, TRAINEES
UNIT_REQ, UNITS
PROCESS : ©See Flowchart in Figure D.3.1.a

Figure D.3.1 The IPO chart of program PERS_MGT

111

1000

CLEAR
SCREEN

¥

CLOSE
FILES

DISPLAY
MAIN MEN

READ
CHOICE

—

DO PROCEDURE

UNIT-REP

DO PROCEDURE
ASSIGNMT

DO PROCEDURE
ENL-SLDS

DO PROCEDURE
TRAINING

DO PROCEDURE

STC-REPS

DISPLAY

Figure D.3.1.a

ERROR
MESSAGE

The flowchart of program

112

PERS-MGT

SYSTEM : PERSONNEL MANAGEMENT

MODULE NAME : UNIT_REP

MODULE No 1160

DESIGNER Labros Karatasios DATE :

4/30/1987

INVOKED BY MODULE
1000

INVOKES MODULES
1110. 1120

INPUTS

Manual list of retired
soldiers, RETIRED,
UNIT_ORG, SLD_SERV.
SLD_ADDE., Manual list
of changes, CHANGES

OUTPUTS :

RETIRED, UNIT_ORG,
HISTORY. SLD_ADDR,
SLD_SERV., SLD_TRAN.
SLD_PREF, CHANGES

PROCESS : See Flowchart

Figure D.3.2.a

Figure D.3.2

The IPO chart of program UNIT_REP

1100
UNIT-REP

:

CLEAR
SCREEN

DISPLAY
SUBMENU 1

READ
CHOICE

Y DO SUBROUTINE

RET-REP

Y DO SUBROUTINE
CHNG-REP

N DISPLAY
ERROR »
MESSAGE

—

Figure D.3.2.a The flowchart of program UNIT-REP

114

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : RET_REP

MODULE No : 1110

DESIGNZR : Labros Karatasios DATE : 4/30/1887
INVOKED BY MODULE : INVOKES MODULES

1100 1111, 1112, 1113

INPUOTS : OUuTPUOTS :
Manual list of retired RETIRED, UNIT_ORG,
soldiers, RETIRED, SLD_ADDR, SLD_SERV,
UNIT_ORG., SLD_SERV, SLD_TRAN, SLD_PREF,
SLD_ADDR HISTORY

PROCESS : GSee Flowchart in Figure D.3.3.a

Figure D.3.3 The IPC chart of program RET_REP

115

1110

(RET-REP)

CLEAR
SCREEN
y
DISPLAY
SUBMENU 1.1
READ
CHOICE
Y DO SUBROUTINE
GET-RET
Y DO SUBROUTINE
| uPUNRET
y DO SUBROUTINE
- UPD-HIST

DISPLAY
ERROR

MESSAGE

Figure D.3.3.a The flowchart of program RET-REP

116

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : GET_RET
MODULE No 1111
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES :
1110
INPOTS : OUTPUTS
Manual list of retired RETIRED
soldiers
PROCESS See Flowchart in Figure D.3.4.a

Figure D.3.4

The IPO chart of program GET_RET

1111

®

DISPLAY MESSAGE

“This program will delete DISPLAY :
all previous records from “"Confirm the
RETIRED file. Do you want ID Number"
to run the program?” 1
! DISPLAY
READ M_ID_NUMBEK
ANSWER Iﬁ
N READ
ANSWER
Y
N
OPEN file ANSWER
RETIRED =Yes
¥ Y
DELETE all records
from RETIRED Look up
T M_ID_NUMBER
v B in RETIRED

DISPLAY :
“"Enter Soldier ID"
‘ DISPLAY Y
“ID NUMBER
READ 4 already
M_ID_NUMBER exists" N

APPEND
a record to
_ID_ggMBE' RETIRED

DISPLAY : l
,_lcLosE N 1D NUMBER
FILES is not valid RETIRED.ID_NUMBER
-"M_ID_NUMBER

DISPLAY
“"Enter Date of
Retirement”

é READ
RETIRED.DATE_RET

Figure D.3.4.a The flowchart of program GET-RET

118

MODULE No : 1112

DESIGNER : Labros Karatasios

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : UPUNRET

DATE : 4/30/1987

INVOKED BY MODULE
1110

INPUTS

SLD_SERV

RETIRED, UNIT_ORG,

INVOKES MODULES

OUTPOUTS -
UNIT_ORG

PROCESS : See Flowchart

Figure D.3.5.a

Figure D.3.5 The IPO chart of program UPUNRET

119

1112

OPEN files:
RETIRED, UNIT-ORG,
SLD_SERV

R

GET next record
in RETIRED

EOF Y

RETIRED
N

M_ID_NUMBER =
RETIRED.ID_NUMBER

v
Look up
M_ID_NUMBER
in SLD_SERYV

M_SPECIALTY=SLD_SERV.SPECIALTY
M_UNIT=SLD_SERV.UNIT

¥

Look up
M_SPECIALTY and M_UNIT
in UNIT_ORG

DISPLAY
ERROR
MESSAGE

UNIT_ORG.EXI
UNIT_ORG.EXIS

R}

UNIT_ORG.COMPLEMENT =
UNIT_ORG.COMPLEMENT + 1

G =

N
STIN
TING - 1

Figure D3.5.a The flowchart of program UPUNRET

120

CLOSE

FILES

B0

SYSTEM
MODULE NAME :
MODULE No
DESIGNKR

: PERSONNEL MANAGEMENT

UPD_HIST
1113
Labros Karatasios

DATE : 4/30/1987

INVOKED BY MODULE : INVOKES MODULES :
1110
INPUTS QUTPUTS :
RETIRED. SLD ADDR, HISTORY., SLD_ADDR,
SLD_SERV SLD_SERV, SLD_TRAN,
SLD_PREF
PROCESS See Flowchart in Figure D.3.6.a

Figure D.3.6

The IPO chart of program UPD_HIST

121

1113

UPD-HIST

SLD_TRANSF,

OPEN files:

RETIRED, SLD_ADDR. SLD_SERV
SLD_PREF, HISTORY

Y

GET next record
in RETIRED

©

N

M_ID_NUMBER =
RETIRED.ID_NUMBER

Y

M_DATE_RET =
RETIRED.DATE_RET

¥

Look up
M_ID_NUMBER
in SLD_ADDR

ERROR

DISPLAY

MESSAGE

APPEND a

record to

HISTORY

y

HISTORY.ID_NUMBER=-M_ID_NUMBER
HISTORY.F_NAME =SLD_ADDR.F_NAME
HISTORY .M_INITIAL=SLD_ADDR.M_INITIAL
HISTORY.L_NAME =SLD_ADDR.L_NAME
HISTORY.STREET =SLD_ADDR.STREET
HISTORY.CITY =SLD+ADDR.CITY
HISTORY.STATE =SLD_ADDR.STATE
HISTORY.ZIP =SLD_ADDR.ZIP
HISTORY . PHONE =SLD_ADDR.PHONE

DELETE

record from
SLD_ADDR

¥
Look ug
M_ID_NUMBEK
in SLD_SERV

¥S

HISTORY .DATE_ENL=
SLD_SERV .DATE_ENL
HISTORY.CLASS=
SLD_SERV.CLASS

v

DELETE record
from SLD_SERV

¥

Look up
M_ID_NUMBEFR
in SLD_TRANSF

&

DELETE record
from SLD_TRANSF

¥

Look up
M_ID_NUMBEK
in SLD_PREF

Figure D.3.6a

122

5

DELETE record
from SLD_PREF

The flowchart of program UFD-HIST

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : CHNG_REP

MODULE No : 1120

DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY IIODULE : INVOKES MODULES :

1100 1121, 1122

INPUTS , OUTPUTS
Manual list of changes, CHANGES, ©SLD_ADDR,
CHANGES SLD_TRAN, SLD_PREF
PROCESS : GSee Flowchart in Figure D.3.7.a

Figure D.3.7 The IPO chart of program CHNG_REP

123

1120

CLEAR
SCREEN

DISPLAY
SUBMENU 1.2

'

READ
CHOICE
Y DO SUBROUTINE
—]
GET-CHNG
Y DO SUBROUTINE
UPSLDCHN

DISPLAY
ERROR
MESSAGE

Figure D.3.7.a The flowchart of program CHNG-REFP

124

SYSTEM
MODULE NAME
MODULE No
DESIGNER

: PERSONNEL MANAGEMENT
: GET_CHNG

1121

Labros Karatasios DATE : 4/30/1987

1120

INVOKED BY MODULE

INVOKES MODULES

INPUTS OUTPUTS

Manual list of changes CHANGES

PROCESS See Flowchart in Figure D.3.8.a
Figure D.3.8 The IPO chart of program GET_CHNG

125

1121

GET-CHNG

/ DISPLAY MESSAGE:
“This program will de
lete all previous re-
cords in CHANGES file.
Do you want to proceed?’

_ID_NUMBEK
1ias 7 digits?

Y

! DISPLAY
DISPLAY "Confirm
GET ANSWER ERKOR ID Number
MESSAGE l
N | GET ANSWER|
N
Y (ibt
OPEN file
CHANGES
‘ Look up
DELETE all M_ID_NUMBEFR
records from in CHANGES
CHANGES
¢‘ M
DISPLAY: DISPLAY
“"Enter the ERROR
Soldier 1D MESSAGE
' ¥
GET
M_ID_NUMBEE APPEND a reccord
to CHANGES
)
M_ID_NUMBER INITIALIZE
record fields
)
CHANGES . ID_NUMBER
=M_ID_NUMBER
|
CLOSE DISPLAY
FILES SOLDIER
RECORD

GET DATA

from user

Figure D.3.8a The flowchart of program GET-CHNG

126

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : UPSLDCHN

MODULE No : 1122
DESIGNER : Labros Karatasios DATE : 4,/30/1987
INVOKED BY MODULE : INVORES MODULES
1120
INPUTS OUTPUTS
CHANGES SLD_ADDE, SLD_SEEV
SLT_ThAN, SLI TREER
e B
PROCESS : See Flowchart in Figure D.3.9.a

Figure D.3.9 The IPO chart of program UPSLDCHN

127

1122

UPSLDCHN

OPEN f1iles:
CHANGES,
SLD_ADDR,
SLD_TRANSF,
SLD_PREF,
SLD_SERV

GET next record
in CHANGES

Y
N

Q)

M_ID_NUMBER
CHANGES. ID_NUMBER

’

Look up
M _ID_NUMBER
in SLD_ADDR

EQF
LD_ADDR
N

SLD_ADDR.
L_NAME
CHANGES.
L_NAME

SLD_ADDR.
STREET
CHANGES.
STREET

SLD_ADDR.
CITY =
CHANGES.
CITY

SLD_ADDR.
STATE =
CHANGES.
STATE

|

| CHANGES.

SLD_ADDR.
Z1P =

1P

SLD_ADDR.

CHANGES.

SLD_ADDR. PHONE
Y F_NAME = PHONE<>
CHANGES. wZ.Z" PHONE
F_NAME]
N
N
Look up
SLD_ADDR. M_ID_NUMBER
Y M_INITIAL=| [in SLD_SERV
CHANGES.
M_INITIAL
N
A
Figure D.3.9a The flowchart of program UPSLDCHN

128

(part 1 of 2)

SLD_SERV.SERV_DUR=
CHANGES.SERV DUR
SLD_SERV. DATE 4 =
SLD SERV DATE ENL
+ CHANGES.SERV _DUR
- 4 months

FAM_SUPP
<>True

]

Look up
M _1D_NUMBER
in sLD TRANSF

SLD_TRANSF.
FAM_SUPP =
CHANGES.
FAM_SUPP

SLD_TRANSF .
MARTT STAT=
CHANGES .

MARIT _STAT

]

CHANGES.
SPEC REAS
>True

SLD_TRANSF.
SPEC_REAS=
ICHANGES .
SPEC_REAS

CHANGES.

NUM CHILD
>0

SLD_TRANSF.
NUM_CHILD=
CHANGES.
NUM_CHILD

SLD_TRANSF.
FINAN_STAT=
ICHANGES .

FINAN_STAT

.

BROTH_SERY

SLD_TRANSF.
BROTH SERV=
CHANGES.

BROTH_SERV

Figure D.3.9a

129

N]
i
Look up
M _1D_NUMBER
in SLD PREF
CHANGES. SLD_PREF.
PREF_UNIT1 IPREF _UNIT1=
H>TILLL CHANGES.
PREF_UNIT1
]
SLLD PREF.
CHANGES. PREF _UNIT2=
PREF _UNITZ2 CHANGES.

<HO"L.ZLo

PREF _UNITZ

CHANGES:
PREF UNIT3
T

SLD_PREF.
PREF UNIT3=
CHANGES.

PREF_UNIT3

DISPLAY
ERROR
MESSAGE

The flowchart of program UPSLDCHN

(part 2 of 2)

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : ASSIGNMT

MODULE No 1200

DESIGNER : Labros Karatasios

DATE 4/30/1987

INVOKED BY MODULE
1000

INPUTS

COMFL_TR. SLD_TRAN,
SPECS, UNITS. UNIT_ORG,
TRSF_PTS. SLD_PREF,
UNIT_REQ, ASSIGNME

INVOKES MODULES

1210, 1220, 1230, 1240,
1250, 1260

OUTPUTS :

TRSE_PTS, UNIT_REQ.

ASSIGNMS, UNIT_ORG,
SLD_SERV, Printed list of
assignments

PROCESS See

Flowchart

in

Figure D.3.10.a

Figure D.3.10

130

The IP0O chart of program ASSIGNMT

1200

CLEAR SCREEN

!

DISPLAY program
PURPOSE. Ask us-
er 1f he wants
to proceed.

!

GET
ANSWER

N
ANSWER
=Yes

Y

DO
CALC_PTS

!

DO
CLC_NEED

'

DO
ASGN_SLD

!

DO
UPDUNASN

!

DO
UPSLDASN

e

DO
PR_ASIGN

!

CLOSE all
files

4

END

Figure D.3.10a The flowchart of program ASSIGNMT

131

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : CALC_PTS

MODULE No : 1210
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES -
1200
INPUTS : OUTPUOTS :
COMPL_TR. SLD_TRAN TRSF_PTS
PROCESS : See Flowchart in Figure D.3.11.a

Figure D.3.11 The IPO chart of program CALC_PTS

132

1210

OPEN files:
CoMPL_TR,
SLD_TRANSF,
TRSF_PTS

-~

GET mnext record

in COMPL_TR

\

SLD_TRANSF
NUM_CHILD

POINTS=
POINTS + 70

Y EOF

CoMPL_TR

[POINTS = 6]
!

M_ID_NUMBER=
CoMPL _TR.
ID_NUMBER

'

M_SPECIALTY=
COMPT_TR.SPECIALTY

ERROCR
MESSAGE

.

'

Look up
M _ID_NUMBER
in SLD_TRANSF

DISPLAY

CLOSE
FILES

END

Figure D.3.11la

EOF
SLD _TRANSE

N

SLD_TRANSF
MARTT _STAT=
IIMH

Y

POINTS =
POINTS + 40

A

133

POINTS=
POINTS + 20

LD TRANSF
FINAN STAT

POINTS=
POINTS + 10

LD_TRANSF.
SPEC_REAS
=True

POINTS=
POINTS + 10

APPEND a
TRSF_PTS

The flowchart of program CALC-PTS

SLD_TRANSF .
NUM_CHILD

POINTS=
POINTS + 35

SLD_TRANSF
FAM_SUPP
=True

POINTS=
POINTS + 40

SLD_TRANSF
BROTH_SERV
>1

POINTS=
POINTS + 20

SLD_TRANSF .

POINTS=
POINTS + 10

TRSF_PTS.1D_NUMBER=
M_ID_NUMBER

record to[®TRSF_PTS.SPECIALTY=

M_SPECIALTY
TRSF_PTS.QUAL _PTS=
POINTS

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : CLC_NEED

MODULE No : 1220
DESIGNER : Labros Karatasios DATE : 4,/30/1987
INVOKED BY MODULE : INVOKES MODULES :
1200
INPUTS : OUTPUTS
SPECS. COMPL_TR, UNITS, UNIT_REQ
UNIT_ORG
|

PROCESS : See Flowchart in Figure D.3.12.a

Figure D.3.12 The IPO chart of program CLC_NEED

1220

@

CLC-NEED

OPEN files:
SPECS, UNITS,
COMPL_TR,
UNIT_ORG,
UNIT REQG

Y

INITIALIZE var
TOTAL_ASSIGN =
TOTAL_REQ
COMPLEM
UNIT_NEED

0

o

s
0
0

GET next record
in SPECS

>

GET next record
in UNIT_ORG

&

GET
record in

next

UNITS

NIT_ORG.
SPECIALTY=
_SPECIALTY

N

M _SPECIALTY =
SPECS.SPECIALTY
|

I

GET nmext record
in COMPL_TR

CLOS
FILE

E
S

END

Figur

SPECIALTY=
_SPECIALT

TOTAL_ASIGN
TOTAL_ASIGN + 1

UNIT_ORG.COMPLEMENT

TOTAL_REQ
TOTAL_REQ +

EOF Y
UNITS
N
M_UNIT=UNITS.UNIT
Look up

M_UNIT and M_SPECIALTY
in UNIT_ORG

'

COMPLEM=
UNIT_ORG.COMPLEMENT

'

UNIT_NEED =
TOTAL-ASSIGN x COMPLEM
TOTAL_REQ

¥

APPEND a record
to UNIT_REQ

'

e D.3.12a The

UNIT_REQ.SPECIALTY=M_SPECIALTY
UNIT_REQ.UNIT
UNIT_REQ.NEEDS

=M_UNIT

=UNIT_NEED

135

flowchart of program CLC-NEED

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : ASGN_SLD

MODULE No : 1230
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODOULE : INVOKES MODULES :
1200
INPUOTS : OUTPUTS
TRSF_PTS, SLD_PREF, ASSIGNMS
UNIT_REQ
PROCESS : See Flowchart in Figure D.3.13.a

Figure D.3.13 The IPO chart of program ASGN_SLD

136

1230

ASGN-SLD

Y

OPEN files:
TRSF_PTS, SLD_PRF,
UNIT_REG, ASSIGNMS

y

[GET CURRENT DATE

!

REPORT _DATE=
CURRENT_DATE +7 DAYS

'

SORT TRSF_PTS
by QUAL PTS
¥
Get mext record

in TRSF_PTS

&
OF Y
TRSF_PT

N

M_ID NUMBER =
TRSF_PTS.1D_NUMBER
M_SPECIALTY =

TRSF_PTS.SPECIALTY

!

Look up M_ID_NUMBER
in sLD_PREF

NIT_REG:

NEEDS>0

Look up M_UNIT2
and M_SPECIALTY
in UNIT_REQ

Look up M_UNIT3
and M_SPECIALTY

in UNIT_REQ

Look up
M_SPECIALTY
and NEEDS>O
in UNIT_REQ

OF N

UNIT:ssgx

oF v
SLD_PREF>
N

M UNITL=
SCD_PREF.PRF_UNIT1
M _UNIT2=
SCD_PREF .PRF_UNIT?2
M UNIT3=
SCD_PREF .PRF_UNIT3

{

Look up M _UNIT1

Figure D.3.13a

DISPLAY,

CLOSE
FILES

and M_sPEEIALTv_—.(:)
in UNIT_REQ b'

137

UNIT_REQ.NEEDS =
UNIT_REQ.NEEDS - 1

Append a record to
ASSIGNMS

ASSIGNMS.ID_NUMBER =
M_ID_NUMBER
ASSIGNMS.UNIT =

UNIT _REQ.UNIT
ASSIGNMS.DATE_ASIGN=
REPORT_DATE
ASSIGNMS.SPECIALTY =
M_SPECIALTY

The flowchart of program ASGN-SLD

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : UPDUNASN
MODULE No 1240
DESIGNER : Labros Karatasios DATE : 4/30/18987
INVOKED BY MODULE : INVOKES MODULES :
1200
INPUTS OUTPUTS
ASSIGNMS UNIT_ORG
PROCESS : See Flowchart in Figure D.3.14.a

Figure D.3.14

The IPO chart of program UPDUNASN

138

1240

(UPDUNASN)
¥
OPEN files:
ASSIGNMS,
UNIT_ORG

|

&

Get nmnext record
in ASSIGNMS

EQF

CLOSE
FILES

END

Figure D.3.14.a

SSIGNM

M_SFPECIALTY=ASSIGNMS.SPECIALTY
M_UNIT=ASSIGNMS.UNIT

)
Look up
M_SPECIALTY
and M_UNIT
in UNIT_ORG

Y

UNIT_DORG.EXISTING =
UNIT_ORG.EXISTING +

UNIT_ORG.COMPLEMENT
UNIT_DORG.COMPLEMENT

[

The flowchart of program UPDUNASN

139

SYSTEM

: PERSONNEL MANAGEMENT

MODULE NAME : UPSLDASN
MODULE No 1250
DESIGNER : Labros Karatasios DATE : 4,/30,/1987
INVOKED BY MODULE : INVOKKES MODULES :
12060
INPUTS OUTPUTS
ASSIGNMS SLD_SERV
PROCESS See Flowchart in Figure D.3.15.a

Figure D.3.15

‘The IPO chart of program UPSLDASN

140

1250

UPSLDASN

OPEN files
ASSIGNMS,
SLD_SERV

"t

Get next
record in
ASSIGNMS

OF Y

ASS IGNM

M_I1D_NUMBER=ASSIGNMS.ID_ NUMBER
M_UNIT=ASSIGNMS.UNIT
M_DATE _ASIGN=ASSIGNMS.DATE_ASIGN

!

Look up
M_ID_NUMBER
in SLD_SERV

DISPLAY

SLD_SERV.DATE_ASSIGN=M.DATE_ASIGN

SLD_SERV.UNIT=M_UNIT

Figure D.3.15a

141

The flowchart of program UPSLDASN

SYSTEM : PERSONNEL MANAGEMENT
MODUILE NAME : PR_ASIGN
MODULE No 1260
DESIGNER Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES :
1200
INPUTS OUTPUTS
ASSIGNMS Printed list of assign-
ments
PROCESS See Flowchart in Figure D.3.16.a

Figure D.3.16

The IP0O chart of program PR_ASIGN

142

1260

(PR~ASIGN)

OPEN file
ASSIGNMS

A

Ask user
to set up
printer

1

send
set-up string
to printer

Y

PRINT
REPORT

RESET
printer

CLOSE file
ASSIGNMS

1
END

Figure D.3.16a The flowchart of program PR-ASIGN

143

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAMK : ENL_SLDS

MODULE No : 1300
DESIGNER : Labros Karatasios DATE : 4/30,/1987
INVOKED BY MODULE : INVOKES MODULES
1000 1310, 1320
INPOTS : OUTPUTS
Manual ENLISTED file, ENLISTED. SLD_ADDR,
ENLISTED SLD_SERV, SLD_TRAN,
SLD_PREF

PROCESS : See Flowchart in Figure D.3.17.a

Figure D.3.17 The IPO chart of program ENL_SLDS

144

1300

(ENL-SLDS)

CLEAR
SCREEN
DISPLAY
SUBMENU 3
READ
CHOICE
Y DO SUBROUTINE
GET-ENL
Y DO SUBROUTINE
ADD-SLD

N / DISPLAYZ
»/ ERROR
{MESSAGE/

Figure D.3.17.a The flowchart of program ENL-SLDS

145

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : GET_ENL

MODULE No : 1310
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES :
1300
INPUTS : OUTPUTS -
Manual ENLISTED file ENLISTED
PROCESS : See Flowchart in Figure D.3.18.a

Figure D.3.18 The IPO chart of program GET_ENL

146

1310

DISPLAY
PURPQOSE of
PROGRAM

Ask user to

confirm that
he wants to
run the program

¥

?

DISPLAY
M_1D_NUMBER
and ask user
to confirm it

y

GET ANSWER

END

Figure D.3.18Ba

GET ANSKWER N
ANSWER
=Yes
N
ANSWER= Y
YES ’
Y APPEND
a record to
ENLISTED
OPEN file
ENLISTED
1

records from
ENLISTED

— ;

DELETE all l

DISPLAY:
"Enter the
soldier 1D

GET
M_ID_NUMBER

ENLISTED.ID NUMBER=
M_ID_NUMBER

DISPLA
the fields
f record

_1D_NUMBER
has 7 digits?

147

Get flelds.
F_NAME, M_INITIAL,
L NAME DATE _ENL,
SERV_DUR...
..PRF_UNIT3

The flowchart of program GET-ENL

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : ADD_SLD

MODULE No : 1320

DESIGNER : Labros Karatasios DATE : 4/30/1987
INVORED BY MODULE : INVOKES MODULES :

1300
INPUTS : OUTPUTS
ENLISTED SLD_ADDR, SLD_SERV,
SLD_TRAN, SLD_PREF

PROCESS : See Flowchart in Figure D.3.19.a

Figure D.3.19 The IPO chart of program ADD_SLD

148

1320

ADD-SLD <;>
SLD_ADDR.ID_NUMBER=M_ID_NUMBER

OPEN files: SLD ADDR F_NAME =ENLISTED.F _NAME
ENLISTED, SLD_ADDR.M_INITIAL=ENLISTED.M_INITIAL
SLD_ADDR, SLD ADDR L NAME =ENLISTED.L NAME
SLD_SERV, SLD_ADDR.STREET =ENLISTED.STREET
SLD_PREF, SLD_ADDR.CITY =ENLISTED.CITY
SLD_TRANSF SLD_ADDR.STATE =ENLISTED.STATE

, (:) 1 SLD_ADDR.ZIP =ENLISTED.ZIP
SLD_ADDR.PHONE =ENLISTED.PHONE
GET next
record in
ENLISTED
Look up
M_ID_NUMBER
Y in SLD_SERV
D
N Y
e found
M ID _NUMBER =
TENLISTED. N
ID NUMBER
‘ APPEND a record
to SLD_SERV

Look up
M 1D NUMBER

in SLD_ADDR A
T SLD_SERV.ID_NUMBER =M_ID_NUMBER
SLD_SERV.DATE_ENL =ENLISTED.DATE_ ENL
SLD_SERV.SERV_DUR =ENLISTED.SERV_ DUFR

SLD_SERV.CLASS =ENLISTED.CLASS

SLD_SERV.SPECIALTY ="222222271"
SLD_SERV.END_TRAIN =False
SLD_SERV.UNIT “2722227"
SLD _SERV.DATE_ASIGN=01/01/01

MESSAGE SLD SERV DATE 4 =DATE_ENL +
SERV _DUR - 4 months
APPEND
a record to
SLD_ADDR
A
DISPLAY
ERROR
MESSAGE

.@:

CLOSE
FILES

END

Figure D.3.19a The flowchart of program ADD-SLD (part 1 of 2)

149

%

Look up
M_ID_NUMBER
in SLD_TRANSF

DISPLAY
ERROR
MESSAGE

APPEND a record
to SLD_TRANSF

Y

SLD_TRANSF .ID_NUMBER =M_ID_NUMBER
SLD_TRANSF .MARIT_STAT=ENLISTED.MARIT_STAT
SLD_TRANSF .NUM_CHILD =ENLISTED.NUM_CHILD
SLN_TRANSF FINAN_STAT=ENLISTED.FINAN_STAT
SLD_TRANSF ,BROTH_SERV=ENLISTED.BROTH_SERV
SLD_TRANSF.FAM_SUPP =ENLISTED.FAM_SUPP
SLD_TRANSF.SPEC_REAS =ENLISTED.SPEC_REAS

]

A

Look up
M_ID_NUMBER
in SLD_PREF

DISPLAY
ERROR
MESSAGE

APPEND
a record to
SLD_PREF

SLD_PREF.ID_NUMBER=M_ID_NUMBER

SLD_PREF.PRF_UNIT1=ENLISTED.PRF_UNIT1
SLD_PREF .PRF_UNIT2=ENLISTED.PRF_UNIT2
‘ SLD_PREF.PRF_UNIT3=ENLISTED.PRF_UNIT3

Figure D.3.19a The flowchart of program ADD-SLD (part 2 of 2) .

150

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : TRAINING

MODULE No : 1400

DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE - INVOKES MODULES :

1000 1410, 1420

INPUTS : OUTPUTS :
ENLISTED. SLD_SERV, TRAIN_REQ, Printed list
UNIT_ORG, SPECS, with training needs
TRAINEES, TRAIN_REQ
PROCESS : See Flowchart in Figure D.3.20.a

Figure D.3.20 The IPO chart of program TRAINING

151

1400

(TRAINING)
CLEAR
SCREEN
DISPLAY
SUBMENU 4
READ
CHO1CE
v DO SUBROUTINE
"1 TRN-NEED
v DO SUBROUT INE
.
| PR-TRAIN

N /DISPLA%
» ERROR
ZMESSAGE/

Figure D.3.20.a The flowchart of program TRAINING

152

SYSTEM : PERSONNEL MANAGEMENT

MODULE NAME : TRN_NEED

MODULE No 1410

DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES :

1400

INPUTS OUTPUTS :
ENLISTEL. SLD_SERV. TRAIN_REQ
UNIT_ORG. SPECS,
TRAINEES
PROCESS See Flowchart in Figure D.3.21.a

Figure D.3.21

The IPO chart of program TRN_NEED

153

1410

TRN—-NEED

OPEN files:
ENLISTED,
TRAINEES,
SLD_SERV,
UNIT_ORG,
SPECS,
TRAIN_RQ

/

INITIALIZE vars:
TOTAL _REQ=0,
TOTAL _COMP=0,
TOTAL_RET=0,
TOTAL_TR=0,
REQ=0, COM=0,

TR=0, RET=0, X=0

¢

3

Get next
record
SLD_SERV

in

TOTAL _REQ

TOTAL _RET
TOTAL_TR

TOTAL_COMP+

TOTAL_TR
TOTAL_TR+1

-+

y

Ask user to
enter the

CURRENT_DATE

TOTAL number
of ENLISTED.

Get next
record in
SPECS

TOTAL_RET
TOTAL_RET+1

GET
TOTAL _ENL

P ¢

_9

Get nmnext record
in UNIT_ORG

N

M_SPECIALTY

SPECS.SPECIALTY

'
Get next

record in
UNIT _ORG

TOTAL_COMP
TOTAL _COMP +

UNIT_ORG.COMPLEMENT

Y

Figure D.3.21a

CLOSE
FILES

1
gy

COM+UNIT_ORG
COMPLEMENT

Y

M_SPECIALTY

UNIT_ORGY
SPECIALTY=

(END)

154

.

The flowchart aof praoram TRN-NFED

frpart 1 of 2)

(8-

Get next record in

SLD_SERV
EO N
SLD_SERV
Y
SLD_SERVY Y
DATE 4 <
CURRENT_DATE
SLD_SERV?Y Y
SPECIALTY= RET= RET +1|[
_SPECIALTY
N
Y »
Get mext record in
TRAINEES
 §
TRAINEESY Y
SPECIALTY= TR TR + 1 >
M _SPECIALTY

REG= COM + RET + TR

'

= REQ xTOTAL ENL
TOTAL_REG

y

APPEND
a record to
TRAIN_RQ

1

TRAIN_RQ.SPECIALTY =
M_SPECIALTY
TRAIN_RQ.SPEC_REQ = X

®

Figure D.3.21a The flowchart of program TRN-NEED (part 2 of 2)

155

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : PR_TRAIN

MODULE No : 1420
DESIGNER : Labros Karatasios DATE : 4/30,/1987
INVOKED BY MODULE : INVOKES MODULES
1400
INPUTS : QUTPUTS :
TRAIN_REQ Printed list with
with training needs
PROCESS : See Flowchart in Figure ©D.3.22.a

Figure D.3.22 The IPO chart of program PR_TRAIN

156

1420

(PR-TRAIN)

OPEN file
TRAIN_RQ

Ask user
to set-up
printer

SEND set-up
string to
printer

4

PRINT
REPORT

RESET
printer

i

CLOSE file
TRAIN_RQ

END

Figure D.3.22a The flowchart of program PR-TRAIN

157

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : STC_REPS

MODULE No : 1500
DESIGNER : Labros Karatasios DATE : 4,/30,/1987
INVOKED BY MODULE : INVOKES MODULES
1000 1510, 1520
INPUTS : OUTPCTS
Manual list of trained COMPL_TR, SLD_SERV,
soldiers, COMFL_TE. TRAINEES
Manuzl list of trainees
PROCESS : See Flowchart in Figure D.3.23.a

Figure D.3.23 The IPO chart of program STC_REPS

158

1500

(STC-REPS)

CLEAR
SCREEN
A
DISPLAY
SUBMENU S
\
READ
CHOICE
v DO SUBROUTINE
COMP-TRN
v DO SUBROUTINE
| SP-TRNEE

N / DISPLAY;
ERROR
ZMESSAGE/

Figure D.3.23.a The flowchart of program STC-REPS

159

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : COMFP_TRN

MODULE No : 1510
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES
1500 1511, 1512
INPUTS : OUTPUTS :
Manual list of trained COMPL_TR, SLD_SERV
soldiers. COMPL_TR
PROCESS : See Flowchart in Figure D.3.24.a

Figure D.3.24 The IPO chart of program COMP_TRN

16 0

1510

{ COMP-TRN)

\

CLEAR
SCREEN
DISPLAY
SUBMENU 5.1
y
READ
CHOICE
v DO SUBROUTINE
I GET-TRND
Y DO SUBROUT INE
"I UPSLDTRN

N / DISPLAYZ
»/ ERROR

ZMESSAGE /

END

Figure D.3.24.a The flowchart of program COMP-TRN

161

SYSTEM : PERSONNEL MANAGEMENT
MODULKE NAME : GET_TRND

MODULE No : 1511
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES
1510
INPUTS : OUTPUTS
Manual list of trained COMPL_TR
soldiers
PROCESS : GSee Flowchart in Figure D.3.25.a

Figure D.3.25 The IPO chart of program GET_TRND

162

1511

GET-TRND

DISPLAY program

?

Ask user
to confirm

purpose ID_NUMBER
Ask user 1f he
ants to run it.
N
READ ANSWER
Y
N APPEND
ANSWER=YE a record to
COMPL_TR
OPEN f1ile A
COMPL _TR COMPL _TR.
& ID_NUMBER=
M_ID_NUMBER
DELETE ALL i
records from
COMPL _TR DISPLAY
e A) "Enter
! 1 Specialtyy
DISPLAY iﬁ
"Enter IDY
‘ GET
COMPL_TR.
GET SPECIALTY
M_1D_NUMBER
Y
_ID_NUMBER
CLOSE
FILES
END
Figure D.3.25a The flowchart of program GET-TRND

163

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME UPSLDTRN
MODULE No 1512
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVOKED BY MODULE : INVOKES MODULES
1510
INPUTS OUTPUTS
COMPL_TFE SLD_SERV
r
PROCESS See Flowchart in Figure D.3.26.a
Figure D.3.26 The IPO chart of program UPSLDTRN

164

1512

(UPSLDTRN)

OPEN files:
COMPL_TR,
SLD_SERV

Get next
record in

COMPL _TR
EOF Y CLOSE
COMPL TR FILES -
N
\ M_I1D_NUMBER=

COMPL_TR.ID_NUMBER
M _SPECIALTY=
COMPL_TR.SPECIALTY

Look up
: M ID NUMBER
10 SLD SERV

Y DISPLAY
ERROR
MESSAGE

SLD SERV.SPECIALTY=M SPECIALTY

y
SLD SERV.END TRAIN = True

END

Figure D.3.26a The flowchart of program UPSLDTRN

165

SYSTEM : PERSONNEL MANAGEMENT
MODULE NAME : SP_TRNEE
MODULE No 1520
DESIGNER : Labros Karatasios DATE : 4/30/1987
INVORED BY MODULE : INVOKES MODULES
1500
INPUTS OUTPUTS :
Manual list of trainees TRAINEES
PROCESS See Flowchart in Figure D.3.27.a

Figure D.3.27

The IPO chart of program SP_TRNEE

166

L

1520

SP_TRNEE

DISPLAY program
PURPOSE .

Ask user to

confirm that he
wants to run 1t

GET
ANSWER

OPEN fale
TRAINEES

!

DELETE all
records from
TRAINEES

END

Fiqure D.3.27a

DISPLAY,

ERROR
MESSAGE

DISFLAY
"Enter ID"

1
GE T
M 1D NUMBE K

7999999

DISPLAY
"Confirm ID"

GET
ANSWER

APPEND
a record to
TRAINEES

TRAINEES. 1D NUMBEK
M ID NUMBER

DISFLAY
"Enter the
Specialty”

s

GET
TRAINEES.SPECIALTY

The flowchart of program SP-TRNEF

APPENDIX K

PROGRAM LISTINGS

Section E.1 The listing of program PERS-MGT

20 2K K KK KK KK K K KK K K KK K K K K K K K K K K K K KK KK KOKOKOKOK KK 0K K K K 3K K 3K kK K K K K K K K K K K K X

X b 3
¥ PERS-MGT : Main control program. It displays a menu *
A screen and depending on the user’'s choice *
* 5/12/87 it gives control to one of five processes. *
* 'Y
A AR KK A K OK K K K A K A K 36OK 3K K 3K OK K OK R OK K KK KK K 3 KK KK 2K K K K K 3K 3K K 3K K 3K K K K K oK K K K 3K K K K K K % X
CLLEAR &8& Clear the screen
¥ Initialize basic dBASE III Plus functions

CLEAR ALL

SET TALK OFF
SET BELL OFF
STORE " * TO CHOICE && Initialize variable CHOICE
* Main loop
DO WHILE . T.
¥ Display Main Menu
@ 2,27 SAY “PERSONNEI, MANAGEMENT SYSTEM"
@ 3,38 SAY U"MENO"
@ 6,20 SAY "1. Unites Reports”
@ 8,20 SAY 2 Assignments”
@ 10,20 SAY 3 New Enlisted Soldiers”
@ 12,20 SAY "4. Training needs”
@ 14,20 SAY 5 STC Reports”
@ 16,20 SAY 6 Exit Program”
@ 20,20 SAY “Your selection, pleage " GET CHOICE
READ

168

* Execute selected process

DO CASE
CASE CHOICE = "1~
DO UNIT-REP && Process Units Reports
CASE CHOICE = "2~
DO ASSTIGNMT && Process Soldiers Assignments
CASE CHOICE = "3~
DO ENL-SLDS && Process New Enlisted Soldiers
CASE CHOICE = "4"
DO TRAINING && Estimate Training Needs
CASE CHOICE = "&"
DO STC-REPS && Process STC Reporto
CASE CHOICE = "6"
CLEAR ALL
CLEAR
KRETURN && Exit program
ENDCASE

ENDDO

Section K.2 The_listing of _program ENL-SLDS

KA A AR A AR KR A A A K KOK A K A R OR A KKK K 2K K OK K K KK A KKK K KO KK K K OK KK KKk XOK ¥ 4 X

+ *
4 EKENL-SILDS @ Program to enter the report for new enlisted +
4 soldiers into the system and to update the *
+ b/12,/87 soldier files. *
4 A
A KKK K F A KK OK KKK AR AR K A OKOF A K K K K K K KK KOK K 2 K K 3K K K KK K K K K K K K K 0K K K K K ok 0K 4
CLEAR && Clear the screen

STORE " " TO EC

o WHILE .T.

@ 2,24 SAY “ENLISTED SOLDIERS PROCESSING"
@ 3,38 SAY “MENU"
@ 6,20 SAY 1. Input new enlisted data”

169

@ 8,20 SAY "2. Process new data”
@ 10.20 SAY "3. Return to main menu”
@ 14,20 SAY “Your selection, please”

GET EC
READ
DO CASE
CASE EC = "1"
DO GET-ENL
CASE EC = "2"
DO ADD-SLD
CASE EC = "3"
CLEAR ALL
CLEAR
RETURN
OTHERWISE
*x Display error message
CLEAR
@ 15,15 SAY "Your selection must be 1, 2 or 3
CLEAR ALL
RETURN
ENDCASE
ENDDQO

Section E.3 The listing of program GET-ENL

S K KK K K K K K K 3K K KK K K KK KK K 3K K K K 3K 3K K KK 3K K K K K K 3K KKK KK 3K K K KK 3OK KKK K KOk KK KOk Ok ok

* x
¥ GET-ENL : This program creates the ENLISTED file and *
* updates it interactively with the data from *
* 5/12/87 the EC report. *
* *
K K oK K KK K K 3K K KK K 3K 3K K K K K K K K K K 3K K K K 3K 3K K KKK K K KKK K K K KK K KK 5K K KK K K KOK K K A0h
CLEAR

CLEAR ALL

170

SET TALK OFEF
SETORELL OFF

4 Detine what the program does

@ 4,45 SAY "This program allows you to put new soldiers into”

@ 6,5 SAY "the system. Note: This program also deletes the”

@ 8,5 SAY “last group of soldiers that were put in the
STORE " TO €
@ 10,5 SAY "Type Y to proceed, anything else to abort . ™
GET C PI1CTURE "VT
kEAD
CLEAK
I ¢ o, "y”
KETURHN
KHD LI
KON DD, KRLISTED . DBE
KUN COpPY Tk.DBF ENLISTED. DBI
USE ENLTSTED
Do WHILE T
CLEAK
w v SAY TkEnter O Lo exit”
STOKK SPACECTT) TG MIT RUMBEHK
@ 4,45 SAY "Enter 1D nuamber
GET MID NUMBEK
HEATD
DO CALE
CASE VAL(MID NUMBER) - 0
RETURN
CAGE VAL(MID NUMBER) < 1000000
@ 7,5 SAY “iInvalid ID number”
DO WHILE VAL(MID NUMBER) < 1000000
DTORE SPACK 7)Y TO MID NUMRER

system”

STORE SPACE(36) TO CL
@ 4,5 SAY "Enter ID number"
GET MID_NUMBER

READ
IF VAL(MID_NUMBER) = 0
RETURN
ENDIF
ENDDO
ENDCASE
STORE " " TO CONF

@ 6,5 SAY "Please confirm the above number (Y to confirm)”
GET CONF PICTURE "'~
READ
IF CONF <> "y~
LOGP
ENDIF
STORE SPACE(20) TO MCITY, ML_NAME
STOREISPACE(lﬁ) TO MF_NAME, MSTREET, MSTATE
STORE SPACE(14) TO MPHONE
STORE SPACE(7) TO MPRF_UNIT1, MPRF_UNIT2, MPRF_UNIT3
STORE SPACE(5) TO MZIP
STORE SPACE(3) TO MCLASS
STORKE SPACE(1) TO MM_INITIAL, MMARIT_STAT, MFINAN_STAT
STORE © " TO MFAM_SUPP, MSPEC_REAS
STORE CTOD(" / s, ") TO MDATE_ENL
STORE O TO MSERV_DUR, MNUM_CHILD, MBROTH_SERV
CLEAR
@ 1,24 SAY "Entering new soldier into systenm"
@ 2,34 SAY "ID number:"+MID_NUMBER
@ 4,5 SAY "First Name " GET MF_NAME PICTURE "a"
@ 4,3 "M, Initial * GET MM _INITIAL PICTURE "'~

Q%]
U
>>
-

@ 4,47 SAY "Last Name " GET ML_NAME PICTURE “a"
@ 6,5 SAY "Street " GET MSTREET PICTURE “a“
@ 6,30 SAY "City * GET MCITY PICTURE "a"
@ 8,5 SAY "State " GET MSTATE PICTURE “a"
@ 8,28 SAY "ZIP " GET MZIP PICTURE "a”
@ 8,39 SAY "Phone “ GET MPHONE

@ 10,5 SAY "Date entered Service GET MDATE_ENL

@ 10,37 SAY “"Number of months of service "
GET MSERV_DUR PICTURE "99"
@ 10,69 SAY "Class " GET MCLASS PICTURE "99!"
@ 12,5 SAY "Marital status: (D)ivorced, (M)arried, ";
“(S)ingle, (W)idowed " GET MMARIT_STAT PICTURE
@ 14,5 SAY "Number of children " GET MNUM_CHILD PICTURE
@ 14,30 SAY "Financial status: (G)ood, (M)edium, (B)ad
GET MFINAN_STAT PICTURE "!”
@ 16,5 SAY "Family Supporter (T/F)
GET MFAM_SUPP PICTURE "!'*"
@ 16,30 SAY "Number of brothers in service
GET MBROTH_SERV PICTURE "9~
@ 18,5 SAY "Priority for transfer (T/F)
GET MSPEC_REAS PICTURE "!"
@ 20,5 SAY "List unit preferences #1:
GET MPRF_UNITI1 PICTURE “"a”

@ 20,38 SAY "#2: " GET MPRF_UNITZ2 PICTURE "a”
@ 20,52 SAY "#3: " GET MPRF_UNIT3 PICTUORE "a”
READ

IF MFAM_SUPP = "T°

STORE .T. TO MEFAM_SUPP
ELSE

STORE .F. TO MFAM_ SUPP
ENDITF

173

nge

IF MSPEC_REAS = "T-
STORE .T. TO MSPEC_REAS
ELSE
STORE .F. TO MSPEC_REAS
ENDIF
USE ENLISTED
APPEND BLANK
REPLACE ID_NUMBER WITH MID_NUMBER, F_NAME WiTH MF_NAME
REPLACE L_NAME WITH ML_NAME, M_INITIAL WITH MM_INITIAL
REPLACE DATE_ENL WITH MDATE_ENL, CLASS WITH MCLASS
REPLACE SERV_DUR WITH MSERV_DUR, MARIT_STAT WITH MMARIT_STAT
REPLACE NUM_CHILD WITH MNUM_CHILD
REPLACE FINAN_STAT WITH MFINAN_STAT
REPLACE FAM_SUPP WITH MFAM_SUPP
REPLACE BROTH_SERV WITH MBROTH_SERV
REPLACE SPEC_REAS WITH MSPEC_REAS
REPLACE PRF_UNIT1 WITH MPRF_UNIT1
REPLACE PRF_UNITZ2 WITH MPRF_UNITZ2
REPLACE PRF_UNIT3 WITH MPRF_UNIT3
REPLACE STREET WITH MSTREET, CITY WITH MCITY
REPLACE STATE WITH MSTATE, ZIP WITH MZIP, PHONE WITH MPHONE
STORE " " TO DA
@ 22,5 SAY "Do you want to enter another soldier?
GET DA PICTURE "!'”
READ
IF DA = "Y"
LOOP
ELSE
RETURN
ENDIF
ENDDO

Section KE.4 The listing of program ADD-SLD

CLEAR
CLEAR ALL
USE ENLISTED
GOTO TOP
DO WHILE .NOT. EOF()
STORE ID_NUMBER TO MID_NUMBER
USE SLD_ADDR INDEX SLAD
SEEK MID_NUMBER
IF FOUND()
@ 4,5 SAY "ID Number already exists in address file!!!"
CLEAR ALL
CLEAR
RETURN
ENDIF
USE ENLISTED
STORE F_NAME TO MF_NAME
STORE M_INITIAL TO MM_INITIAL
STORE L_NAME TO ML_NAME
STORE STREET TO MSTREET
STORE CITY TO MCITY
STORE STATE TO MSTATE
STORE ZIP TO MZIP
STORE PHONE TO MPHONE
USE SLD_ADDR INDEX SLAD
APPEND BLANK
REPLACE F_NAME WITH MF_NAME, M_INITIAL WITH MM_INITIAL
REPLACE L_NAME WITH ML_NAME, STREET WITH MSTREET
REPLACE CITY WITH MCITY, STATE WITH MSTATE, ZIP WITH MZIP
REPLACE PHONE WITH MPHONE, ID_NUMBER WITH MID_NUMBER

USE SLD_SERV
SEEK MID_NUMBER
IF FOUND()
@ 6,5 SAY "ID Number already exists in service file!!!"”
CLEAR ALL
CLEAR
RETURN
ENDIF
USE ENLISTED
STORE DATE_ENL TO MDATE_ENL
STORE SERV_DUR TO MSERV_DUR
STORE CLASS TO MCLASS
STORE SERV_DUR x 30 TO MLS
STORE MLS - 120 TO MLE
STORE MDATE_ENL + MLE TO MDATE_4
USE SLD_SERV INDEX SLSE
APPEND BLANK
REPLACE ID_NUMBER WITH MID_NUMBER, DATE_ENL WITH MDATE_ENL
REPLACE SERV_DUR WITH MSERV_DUR, CLASS WITH MCLASS
REPLACE DATE_4 WITH MDATE_4, END_TRAIN WITH .F.
USE SLD_PREF INDEX SLPR
SEEK MID_NUMBER
IF FOUND()
@ 8,5 SAY " ID Number already exists in preference file"
CLEAR ALL
CLEAR
RETURN
ENDIF
USE ENLISTED
STORE PRF_UNIT1 TO MPRF_UNITI1
STORE PRF_UNIT2 TO MPRF_UNIT2

176

STORE PRF_UNIT3 TO MPRF_UNIT3
USE SLD_PREF INDEX SLPR
APPEND BLANK
REPLACE ID_NUMBER WITH MID_NUMBER, PRF_UNIT1 WITH MPRF_UNITI
REPLACE PRF_UNITZ WITH MPRF_UNIT2, PRF_UNIT3 WITH MPRF_UNIT3
USE SLD_TRAN INDEX SLTR
SEEK MID_NUMBER
IF FOUND()
@ 10,5 SAY "ID Number already exists in transfer file!!"
CLEAR ALL
CLEAR
RETURN
ENDIF
USE ENLISTED
STORE MARIT_STAT TO MMARIT_STAT
STORE NUM_CHILD TO MNUM_CHILD
STORE FINAN_STAT TO MFINAN_STAT
STORE BROTH_SERV TO MBROTH_SERV
STORE FAM_SUPP TO MFAM_SUFPF
STORE SPEC_REAS TO MSPEC_REAS
USE SLD_TRAN INDEX SLTR
APPEND BLANK
REPLACE MARIT_STAT WITH MMARIT_STAT
REPLACE ID_NUMBER WITH MID_NUMBER, NUM_CHILD WITH MNUM_CHILD
REPLACE FINAN_STAT WITH MFINAN_STAT
REPLACE BROTH_SERV WITH MBROTH_SERV
REPLACE FAM_SUPP WITH MFAM_SUPP, SPEC_REAS WITH MSPEC_REAS
USE ENLISTED
IF .NOT. EOF()
SKIP
ENDIF

177

LOOP
ENDDO
USE ENLISTED
DELETE ALL
PACK
CLEAR ALL
RETURN

178

LIST OF_REFERENCES

Naur, Peter and Randell, Brian, Software Engineering,
Report on a conference sponsored by the NATO Scieunce
Committee, Garmish., Germany., T-11 October 1868 NATO

Scientific Affairs Division, Brussels, 1969.

Fairley, Richard, Software Engineering Educatijon: Status
and Progpects, Proceedings of the 12th Hawaii Internatio-
nal Conference on System Sciences, Pt. I, pp. 140-146,

Western Periodicals Ltd, North Hollywood, CA, 1979.

Yourdon, Edward, Managing the Structured Technigues,
Yourdon Inc., New York, 1986.

Mc Clure, Carma, Managing Software Development and Main-
tenance, Litton Educational Publishing Inc., 1881.

U.S. Bureau of the Census, Statistical abstract of the
United States: 1979, Washington, D.C., 1979.

Reifer, Donald, Tutorial: Software Manasement, IEEE
Computer Society, 1984.

Clifton, David and Fyffe, Project Feagibility Analysis:
A Gnide to Profitable New Ventures, Jchn Wiley and Sons,
Inc., New York, 1977.

Fitzerald, J., Fitzerald and Stallings, Fundamentals of
Systems_Analysig, John Wiley and Sons Inc, New York, 1881.

Kroenke, David, Database procegsing, Science Research

Associates, Inc., 1983.

179

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Davis, William, Systems Analysis and Design, Addison
Wesley Publishing Co., 1883.

Boehm, Barry, Softuare kEngineering, IEEE Transactions on
Computers, vol. C-25, no 12, Deceumber 1976.

De Marco, Tony, Structured Analyveis and System Specifica-
tion, Yourdon Press, New York, 1878.

ISDOS Project, PSL/PSA User's Reference Manual, University

of Michigan, Ann Arbor, Michigan.

Connor, M., F., SADT. DStructured Analvsis and Design
Technigue Introduction, SofTech report 9595-7, SofTech
Inc., Waltham, Mass, 1980.

Mullery, G., P., CORE. A method for controlled requirement
specification, Proceedings of the 4th International Confe-
rence on Software Engineering, pp. 126-35, 1979.

Alford, M, W, Software Reguirements Engineering Methodolo-
gy (SREM) at the age of four, Proceedings of the Inter-
national Computer Software and Applications Conference,

pp. 866-74, 1980.

Salter, K., G., A methodology for decomposing system
requirements__into data processing _requirements, Procee-

dings of the 2nd International Conference on Software

Engineering, pp. 91-101, 1876.

Peterson, J., L., Petri Net Theory and the Modeling_ of
Systems, Prentice Hall, Englewood Cliffs, N.J., 1981.

Jackson, M., System Development, Prentice Hall, Englewood
Cliffe, N.J., 1883.

180

SSI. 1982a, Introduction to SDS, Software Sciences Limited,
Macclesfield, 1982.

Gane, C. and Sarson, T., Structured Systems._ Analygis:
Tools and Technigues, Prentice Hall, Englewocod Cliffs,

N.J., 1879.

Everest, Gordon,

1986.

Campbell, Sally,

Hall, Inc., 1984.

Database Management, McGraw Hill, Inc.,

Microcomputer Software Design, Prentice

181

3]

INITIAL DISTRIBUTION LIST

No.

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code (142
Naval Postgraduate School
Monterey, California 93943-5002

Professor S. H. Parry, Code 55Py
Department of OUperations Research
Naval Postgraduate School
Monterey, California 93943-5000

Department Chairman, Code 52
Department of Computer Science
Naval Postgzraduate School
Monterey, California 93943-5000

Computer Technology Curicular Office
Code 37

Naval Postgraduate School

Monterey, California 93943-5000

Professor Thomas Wu, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93843-5000

Major Labros G. Karatasios
Information Systems Division
Hellenic Army General Staff
Stratopedo Papagou, Holargos
Athens, GREECE

182

Copies

